c-Jun jest protein koji je kod ljudi kodiran genom JUN sa hromosoma 1. c-Jun, u kombinaciji sa c-Fos, formira AP-1 transkripcijski faktor za rani odgovor, Prvo je identificiran kao Fos-vezujući protein p39 i tek kasnije ponovo otkriven kao proizvod gena JUN. c-jun je bio prvootkriveni onkogeni transkripcijski faktor.[5] The proto-oncogene c-Jun je ćelijski homolog virusnog onkoproteina v-jun (P05411).[6] Virusni homolog v-jun je otkriven u virusu 17ptičjeg sarkoma i dobio je ime po ju-nana, japanski riječ za 17.[7] Ljudski JUN kodira protein veoma sličan virusnom proteinu, koji direktno stupa u interakciju sa specifičnim ciljnim sekvencama DNK, kako bi regulirao ekspresiju gena. Ovaj gen je bez introna i mapiran je na 1p32-p31, hromozomsku regiju koja je uključena u translokacije i delecije kod ljudskih malignosti.[8]

JUN
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

1A02, 1JNM, 1JUN, 1S9K, 1T2K, 1FOS

Identifikatori
AliasiJUN
Vanjski ID-jeviOMIM: 165160 MGI: 96646 HomoloGene: 1679 GeneCards: JUN
Lokacija gena (čovjek)
Hromosom 1 (čovjek)
Hrom.Hromosom 1 (čovjek)[1]
Hromosom 1 (čovjek)
Genomska lokacija za JUN
Genomska lokacija za JUN
Bend1p32.1Početak58,776,845 bp[1]
Kraj58,784,048 bp[1]
Lokacija gena (miš)
Hromosom 4 (miš)
Hrom.Hromosom 4 (miš)[2]
Hromosom 4 (miš)
Genomska lokacija za JUN
Genomska lokacija za JUN
Bend4 C5|4 43.34 cMPočetak94,937,271 bp[2]
Kraj94,940,459 bp[2]
Obrazac RNK ekspresije




Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija GO:0005097, GO:0005099, GO:0005100 GTPase activator activity
GO:0001131, GO:0001151, GO:0001130, GO:0001204 DNA-binding transcription factor activity
GO:0001077, GO:0001212, GO:0001213, GO:0001211, GO:0001205 DNA-binding transcription activator activity, RNA polymerase II-specific
GO:0001200, GO:0001133, GO:0001201 DNA-binding transcription factor activity, RNA polymerase II-specific
cAMP response element binding
R-SMAD binding
HMG box domain binding
transcription factor binding
GO:0000980 RNA polymerase II cis-regulatory region sequence-specific DNA binding
transcription factor activity, RNA polymerase II core promoter proximal region sequence-specific binding
vezivanje enzima
chromatin binding
GO:0001948, GO:0016582 vezivanje za proteine
double-stranded DNA binding
vezivanje sa DNK
sequence-specific DNA binding
GO:0001105 transcription coactivator activity
vezivanje identičnih proteina
transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding
vezivanje sa RNK
protein homodimerization activity
protein heterodimerization activity
ubiquitin protein ligase binding
ubiquitin-like protein ligase binding
GO:0000975 transcription cis-regulatory region binding
Ćelijska komponenta citosol
transcription repressor complex
jedro
nuclear chromosome
nukleoplazma
transcription regulator complex
transcription factor AP-1 complex
Biološki proces GO:1904089 negative regulation of neuron apoptotic process
negative regulation of DNA binding
outflow tract morphogenesis
transcription by RNA polymerase II
Učenje
monocyte differentiation
response to organic substance
leading edge cell differentiation
Fc-epsilon receptor signaling pathway
positive regulation of neuron apoptotic process
cellular response to hormone stimulus
regulation of DNA-binding transcription factor activity
Jednodnevni biološki ritam
Angiogeneza
positive regulation of ERK1 and ERK2 cascade
Ras protein signal transduction
transforming growth factor beta receptor signaling pathway
negative regulation of cell population proliferation
response to muscle stretch
cellular response to calcium ion
response to cytokine
GO:0009373 regulation of transcription, DNA-templated
SMAD protein signal transduction
axon regeneration
positive regulation of fibroblast proliferation
response to mechanical stimulus
positive regulation of epithelial cell migration
positive regulation of DNA-templated transcription, initiation
transcription, DNA-templated
positive regulation of cell differentiation
positive regulation of monocyte differentiation
positive regulation of pri-miRNA transcription by RNA polymerase II
negative regulation of protein autophosphorylation
membrane depolarization
negative regulation of apoptotic process
eyelid development in camera-type eye
microglial cell activation
positive regulation of DNA replication
response to lipopolysaccharide
response to radiation
response to cAMP
GO:0045996 negative regulation of transcription, DNA-templated
response to hydrogen peroxide
positive regulation of smooth muscle cell proliferation
positive regulation of endothelial cell proliferation
GO:1904578 response to organic cyclic compound
GO:0010260 starenje
regulation of cell cycle
regulation of cell population proliferation
positive regulation of cell population proliferation
liver development
negative regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum stress
cellular response to potassium ion starvation
GO:0006928 cellular process or phenomenon
release of cytochrome c from mitochondria
GO:0003257, GO:0010735, GO:1901228, GO:1900622, GO:1904488 positive regulation of transcription by RNA polymerase II
GO:0032320, GO:0032321, GO:0032855, GO:0043089, GO:0032854 positive regulation of GTPase activity
GO:0072353 cellular response to reactive oxygen species
positive regulation of apoptotic process
GO:0060469, GO:0009371 positive regulation of transcription, DNA-templated
cellular response to cadmium ion
GO:1901227 negative regulation of transcription by RNA polymerase II
positive regulation of vascular associated smooth muscle cell proliferation
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_002228

NM_010591

RefSeq (bjelančevina)

NP_002219

NP_034721

Lokacija (UCSC)Chr 1: 58.78 – 58.78 MbChr 4: 94.94 – 94.94 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 331 aminokiselina, a molekulska težina 35.676 Da.[9]

1020304050
MTAKMETTFYDDALNASFLPSESGPYGYSNPKILKQSMTLNLADPVGSLK
PHLRAKNSDLLTSPDVGLLKLASPELERLIIQSSNGHITTTPTPTQFLCP
KNVTDEQEGFAEGFVRALAELHSQNTLPSVTSAAQPVNGAGMVAPAVASV
AGGSGSGGFSASLHSEPPVYANLSNFNPGALSSGGGAPSYGAAGLAFPAQ
PQQQQQPPHHLPQQMPVQHPRLQALKEEPQTVPEMPGETPPLSPIDMESQ
ERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANM
LREQVAQLKQKVMNHVNSGCQLMLTQQLQTF

Funkcija

uredi

Regulacija

uredi

I Jun i njegovi dimerizacijski partneri u formiranju AP-1 podložni su regulaciji različitim vanćelijskim stimulansima, koji uključuju peptidne faktore rasta, proupalne citokine, oksidativni i druge oblike ćelijskog stresa i UV-zračenje. Naprimjer, UV-zračenje je moćan induktor za povišenu ekspresiju c-juna.[6]

Transkripcija c-juna autoregulirana je sopstvenim proizvodom, Jun. Vezivanje Juna (AP-1) za AP-1 vezu visokog afiniteta u jun promotorskoj regiji indukuje jun transkripciju. Ova pozitivna autoregulacija stimulacijom sopstvene transkripcije može biti mehanizam za produžavanje signala vanćelijskih stimulusa. Ovaj mehanizam može imati biološki značaj za aktivnost c-juna kod raka.[10][11]

Također, aktivnosti c-juna mogu se regulirati putem ERK-a. Utvrđeno je da konstitutivno aktivan ERK povećava transkripciju i stabilnost c-juna preko CREB i GSK3. Ovo rezultira aktiviranim c-jun i njegovim nizvodnim ciljevima kao što su RACK1 i ciklin D1. RACK1 može poboljšati JNK aktivnost, a aktivirana JNK signalizacija naknadno regulira aktivnost c-juna.[12]

Aktivira se dvostrukom fosforilacijom putem JNK puta, ali ima i funkciju neovisnu od fosforilacije. Nokaut c-juna je smrtonosan, ali transgene životinje s mutiranim c-junom koji ne može biti fosforiliran (nazvan c-junAA) mogu preživjeti.

Fosforilacija Juna na serinima 63 i 73 i treoninima 91 i 93 povećava transkripciju c-jun ciljnih gena.[13] Stoga, regulacija aktivnosti c-juna može se postići fosforilacijom na N-terminalnom spoju pomoću Jun N-terminalnih kinaza (JNK). Pokazalo se da je Junova aktivnost (aktivnost AP-1) u apoptozi izazvanoj stresom i ćelijskoj proliferaciji regulirana njegovom N-terminalnom fosforilacijom.[14] Druga studija pokazala je da onkogena transformacija ras i fos također zahtijeva jun N-terminalnu fosforilaciju na serinima 63 i 73.[15]

Progresija ćelijskog ciklusa

uredi

Studije su pokazale da je c-jun neophodan za napredovanje kroz G1-fazu ćelijskog ciklusa, a c-jun nulte ćelije pokazuju povećano zaustavljanje G1. C-jun regulira nivo transkripcije ciklina D, koji je glavna Rb-kinaza. Rb je supresor rasta, a inaktivira se fosforilacijom. Stoga je c-jun neophodan za održavanje dovoljne aktivnosti ciklin D- kinaze i omogućavanje napredovanja ćelijskog ciklusa.[6]

U ćelijama bez c-juna, ekspresija p53 (induktor zaustavljanja ćelijskog ciklusa) i p21 (CDK inhibitor i p53 ciljni gen) je povećana i te ćelije pokazuju defekt ćelijskog ciklusa. Prekomjerna ekspresija c-jun u ćelijama dovodi do sniženog nivoa p53 i p21, te pokazuje ubrzanu proliferaciju ćelija. C-jun potiskuje transkripciju p53, vezivanjem za varijantu AP-1 mjesta u promotoru p53. Ovi rezultati pokazuju da c-jun smanjuje regulaciju p53, kako bi kontrolirao progresiju ćelijskog ciklusa.[16]

Antiapoptozna aktivnost

uredi

UV zračenje može aktivirati ekspresiju c-jun i JNK signalni put. C-jun štiti ćelije od apoptoza izazvanih UV-zračenjem i sarađuje sa NF-κB, kako bi sprečio apoptozu izazvanu putem TNFα. Zaštita od apoptoze pomoću c-juna zahtijeva serine 63/73 (uključene u fosforilaciju Juna), što nije potrebno u napretku G1 posredovanom c-junom. Ovo sugerira da c-jun regulira progresiju ćelijskog ciklusa i apoptozu putem dva odvojena mehanizma.[6]

Studija je koristila jetreno specifičnu inaktivaciju c-juna kod hepatoćelijskog karcinoma, što je pokazalo da je poremećeni razvoj tumora u korelaciji sa povećanim nivoom proteina p53 i nivoom iRNK ciljnog gena p53 PMAIP1. Također, c-jun može zaštititi hepatocite od apoptoze, jer hepatociti nemaju c-jun, pokazuju povećanu osjetljivost na apoptozu izazvanu putem TNFα. U onim hepatocitima kojima nedostaje c-jun, delecija p53 može vratiti otpornost prema TNFα. Ovi rezultati pokazuju da c-jun antagonizira proapoptotsku aktivnost p53 u tumoru jetre.[17]

Klinički značaj

uredi

Poznato je da c-jun ima ulogu u ćelijskoj proliferaciji i apoptozi endometrija tokom menstruacijskog ciklusa. Ciklična promjena nivoa c-jun proteina značajna je u proliferaciji i apoptozi epitelnih ćelija u žlijezdama. Perzistentna stromna ekspresija c-jun proteina može spriječiti stromne ćelije da uđu u apoptozu tokom kasne sekretorne faze.[18]

Kancer

uredi

U studiji koja je koristila nemaloćelijski karcinom pluća (NSCLC), utvrđeno je da je c-jun prekomjerno izražen u 31% slučajeva kod primarnih i metastatskih tumora pluća, dok je normalan provodni disajni put i alveolni epitel općenito nije eksperimirao c-jun.[19]

Studija sa grupom koja se sastojala od 103 slučaja faze I/II invazivnih karcinoma dojke pokazala je da je aktivirani c-jun eksprimiran pretežno na invazivnom prednjem dijelu raka dojke i povezan je sa proliferacijom i angiogenezom.[20]

Inicijacija tumora

uredi

Urađena je studija sa specifičnom inaktivacijom c-juna za jetru, u različitim fazama razvoja tumora kod miševa sa hemijski izazvanim hepatoćelijskim karcinomom. Rezultat ukazuje da je c-jun potreban u ranoj fazi razvoja tumora, a delecija c-juna može u velikoj mjeri potisnuti formiranje tumora. Također, c-jun je neophodan za preživljavanje tumorskih ćelija između faze inicijacije i progresije. Za razliku od toga, inaktivacija c-juna kod uznapredovalih tumora ne ometa progresiju tumora.[17]

Prekomjerna ekspresija c-juna u ćelijama MCF-7 može rezultirati ukupnom povećanom agresivnošću, što je prikazano povećanom ćelijskom pokretljivošću, povećanom ekspresijom enzima koji razgrađuje matriks MMP-9, povećanom in vitro hemoinvazijom i formiranjem tumora na golim miševima u odsustvu egzogenih estrogena. Ćelije MCF-7 sa prekomjernom ekspresijom c-jun postale su nereaaktivne na estrogen i tamoksifen, tako da se pretpostavlja da prekomjerna ekspresija c-juna dovodi do fenotipa neovisnog od estrogena u ćelijama raka dojke. Uočeni fenotip za MCF-7 ćelije s prekomjernom ekspresijom c-juna sličan je onom koji je klinički uočen kod uznapredovalog karcinoma dojke, koji nije reagirao na hormone.[21]

Invazivni fenotip kojem doprinosi prekomjerna ekspresija c-juna potvrđen je u drugoj studiji. Osim toga, ova studija pokazala je povećane in vivo metastaza u jetri zbog raka dojke s prekomjernom ekspresijom c-juna. Ovo otkriće sugerira da c-jun ima ključnu ulogu u metastazama raka dojke.[22]

Kod tumora dojke, endogeni c-jun ima ključnu ulogu u ErbB2-indukovanoj migraciji i invaziji epitelnih ćelija dojke. Jun transkripcijski aktivira promotore SCF (faktor matičnih ćelija) i CCL5. Indukovana ekspresija SCF i CCL5 promovira samoobnavljajuću populaciju epitela dojke. To sugerira da c-jun posreduje u ekspanziji matičnih ćelija raka dojke, kako bi se povećala invazivnost tumora.[23]

Uočeno je da je C-jun prekomjerno eksprimiran u uzorcima karcinom pločastih ćelija vulve, u vezi sa inaktivacijom gena za supresiju tumora RARB izazvanom hipermetilacijom.[10] Zaista, viši nivoi iRNK c-Juna testirani su u uzorcima raka vulve u poređenju sa onima normalne kože i preneoplazijskih lezija vulve, čime se naglašava unakrsna veza između RARB gena i onkogena c-Jun.[10]

Deset nediferenciranih i visoko agresivnih sarkoma pokazalo je amplifikaciju jun gena i prekomjernu ekspresiju JUN na nivou RNK i proteina. Prekomjerna ekspresija c-jun u ćelijama 3T3-L1 (preadipocitna netumorska ćelijska linija koja podsjeća na ljudski liposarkom) može blokirati ili odgoditi adipocitnu diferencijaciju tih ćelija.[24]

Regeneracija nerava i kičmene moždine

uredi

Povreda perifernih živaca kod glodara brzo aktivira JNK signalizaciju koja zauzvrat aktivira c-Jun. Nasuprot tome, povreda nerava u centralnom nervnom sistemu nema tgakv e posljedice. c-Jun je dovoljan da podstakne regeneraciju aksona i u perifernom i u centralnom nervnom sistemu, jer prekomjerna ekspresija u neuronima ganglija dorzalnog korijena i neuronima kore dovodi do povećane regeneracije.[25]

Kao cilj lijeka protiv raka

uredi

Budući da je c-jun uočen prekomjerno izražen kod raka,[10] nekoliko studija je naglasilo hipotezu da bi ovaj gen mogao biti meta za terapiju raka. Studija je pokazala da onkogena transformacija ras i fos zahtijeva N-terminalnu fosforilaciju jun na serinima 63 i 73 pomoću Jun N-terminalnih kinaza (JNK). U ovoj studiji, inducirani tumor kože i osteosarkom pokazali su poremećen razvoj kod miševa sa mutantnim Jun koji nije sposoban za fosforilaciju N-terminala.[15] Također, u mišjem modelu raka crijeva, genetička abrogacija Jun, N-terminalna fosforilacija ili inaktivacija c-juna specifična za crijeva oslabila je razvoj raka i produžila životni vijek.[13] Stoga ciljanje na fosforilaciju N-terminala Jun (ili JNK signalni put) može biti potencijalna strategija za inhibiciju rasta tumora.

U ćelijama raka B16-F10 dobijenim od melanoma, inaktivacija c-juna farmakološkim JNK/jun inhibitorom SP, u kombinaciji sa obaranjem JunB može dovesti do citotoksičnog efekta, što dovodi do zaustavljanja rasta ćelije i apoptoze. Ova anti-JunB/Jun strategija može povećati preživljavanje miševa inokuliranih tumorskim ćelijama, što sugerira potencijalnu antitumorsku strategiju putem inhibicije Juna i JunB.[26]

Antikancerska svojstva c-jun

uredi

Većina rezultata istraživanja pokazuje da c-jun doprinosi inicijaciji tumora i povećanju invazivnosti. Međutim, nekoliko studija je otkrilo neke alternativne aktivnosti c-juna, sugerirajući da bi c-jun zapravo mogao biti mač sa dvije oštrice kod raka.

p16INK4a je supresor tumora i inhibitor ćelijskog ciklusa, a studija pokazuje da c-jun djeluje kao “tjelohranitelj” p16INK4a, sprečavajući metilaciju promotora p16INK4a. Stoga, c-jun može spriječiti utišavanje gena p16INK4a.

Tiloforin

uredi

Tiloforin je tip alkaloida biljnog porijekla s antikancerogenim djelovanjem, izazivanjem zaustavljanja ćelijskog ciklusa. Studija je pokazala da tretman tiloforinom povećava akumulaciju c-jun proteina. Zatim ekspresija c-juna u sprezi sa tiloforinom podstiče zaustavljanje G1 u ćelijama karcinoma kroz smanjenje ciklina A2. Stoga, rezultat ukazuje da je antikancerogeni mehanizam tiloforina posredovan c-junom.[27]

Interakcije

uredi

Pokazalo se da je C-jun u interakciji sa:

Također pogledajte

uredi

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000177606 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000052684 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Vogt PK (juni 2002). "Fortuitous convergences: the beginnings of JUN". Nature Reviews. Cancer. 2 (6): 465–9. doi:10.1038/nrc818. PMID 12189388. S2CID 44145552.
  6. ^ a b c d Wisdom R, Johnson RS, Moore C (januar 1999). "c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms". The EMBO Journal. 18 (1): 188–97. doi:10.1093/emboj/18.1.188. PMC 1171114. PMID 9878062.
  7. ^ Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK (maj 1987). "Avian sarcoma virus 17 carries the jun oncogene". Proceedings of the National Academy of Sciences of the United States of America. 84 (9): 2848–52. doi:10.1073/pnas.84.9.2848. PMC 304757. PMID 3033666.
  8. ^ "Entrez Gene: JUN jun oncogene".
  9. ^ "UniProt, P05412" (jezik: eng.). Pristupljeno 29. 11. 2021.CS1 održavanje: nepoznati jezik (link)
  10. ^ a b c d Rotondo JC, Borghi A, Selvatici R, Mazzoni E, Bononi I, Corazza M, Kussini J, Montinari E, Gafà R, Tognon M, Martini F (juli 2018). "Association of Retinoic Acid Receptor β Gene With Onset and Progression of Lichen Sclerosus-Associated Vulvar Squamous Cell Carcinoma". JAMA Dermatology. 154 (7): 819–823. doi:10.1001/jamadermatol.2018.1373. PMC 6128494. PMID 29898214.
  11. ^ Angel P, Hattori K, Smeal T, Karin M (decembar 1988). "The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1". Cell. 55 (5): 875–85. doi:10.1016/0092-8674(88)90143-2. PMID 3142689. S2CID 19043736.
  12. ^ Lopez-Bergami P, Huang C, Goydos JS, Yip D, Bar-Eli M, Herlyn M, Smalley KS, Mahale A, Eroshkin A, Aaronson S, Ronai Z (maj 2007). "Rewired ERK-JNK signaling pathways in melanoma". Cancer Cell. 11 (5): 447–60. doi:10.1016/j.ccr.2007.03.009. PMC 1978100. PMID 17482134.
  13. ^ a b Nateri AS, Spencer-Dene B, Behrens A (septembar 2005). "Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development". Nature. 437 (7056): 281–5. Bibcode:2005Natur.437..281N. doi:10.1038/nature03914. PMID 16007074. S2CID 4373376.
  14. ^ Behrens A, Sibilia M, Wagner EF (mart 1999). "Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation". Nature Genetics. 21 (3): 326–9. doi:10.1038/6854. PMID 10080190. S2CID 25622141.
  15. ^ a b Behrens A, Jochum W, Sibilia M, Wagner EF (maj 2000). "Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation". Oncogene. 19 (22): 2657–63. doi:10.1038/sj.onc.1203603. PMID 10851065.
  16. ^ Schreiber M, Kolbus A, Piu F, Szabowski A, Möhle-Steinlein U, Tian J, Karin M, Angel P, Wagner EF (mart 1999). "Control of cell cycle progression by c-Jun is p53 dependent". Genes & Development. 13 (5): 607–19. doi:10.1101/gad.13.5.607. PMC 316508. PMID 10072388.
  17. ^ a b Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, Wagner EF (januar 2003). "Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53". Cell. 112 (2): 181–92. doi:10.1016/S0092-8674(03)00042-4. PMID 12553907. S2CID 8358992.
  18. ^ Udou T, Hachisuga T, Tsujioka H, Kawarabayashi T (2004). "The role of c-jun protein in proliferation and apoptosis of the endometrium throughout the menstrual cycle". Gynecologic and Obstetric Investigation. 57 (3): 121–6. doi:10.1159/000075701. PMID 14691341. S2CID 29512406.
  19. ^ Szabo E, Riffe ME, Steinberg SM, Birrer MJ, Linnoila RI (januar 1996). "Altered cJUN expression: an early event in human lung carcinogenesis". Cancer Research. 56 (2): 305–15. PMID 8542585.
  20. ^ Vleugel MM, Greijer AE, Bos R, van der Wall E, van Diest PJ (juni 2006). "c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer". Human Pathology. 37 (6): 668–74. doi:10.1016/j.humpath.2006.01.022. PMID 16733206.
  21. ^ Smith LM, Wise SC, Hendricks DT, Sabichi AL, Bos T, Reddy P, Brown PH, Birrer MJ (oktobar 1999). "cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype". Oncogene. 18 (44): 6063–70. doi:10.1038/sj.onc.1202989. PMID 10557095.
  22. ^ Zhang Y, Pu X, Shi M, Chen L, Song Y, Qian L, Yuan G, Zhang H, Yu M, Hu M, Shen B, Guo N (august 2007). "Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model". BMC Cancer. 7: 145. doi:10.1186/1471-2407-7-145. PMC 1959235. PMID 17672916.
  23. ^ Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N, Lisanti MP, Pestell RG (mart 2010). "c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion". The Journal of Biological Chemistry. 285 (11): 8218–26. doi:10.1074/jbc.M110.100792. PMC 2832973. PMID 20053993.
  24. ^ Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, Delattre O, Stern MH, Aurias A (april 2007). "JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas". Cancer Cell. 11 (4): 361–74. doi:10.1016/j.ccr.2007.02.007. PMID 17418412.
  25. ^ Mahar M, Cavalli V (juni 2018). "Intrinsic mechanisms of neuronal axon regeneration". Nature Reviews. Neuroscience (jezik: engleski). 19 (6): 323–337. doi:10.1038/s41583-018-0001-8. PMC 5987780. PMID 29666508.
  26. ^ Gurzov EN, Bakiri L, Alfaro JM, Wagner EF, Izquierdo M (januar 2008). "Targeting c-Jun and JunB proteins as potential anticancer cell therapy". Oncogene. 27 (5): 641–52. doi:10.1038/sj.onc.1210690. PMID 17667939.
  27. ^ Yang CW, Lee YZ, Hsu HY, Wu CM, Chang HY, Chao YS, Lee SJ (juni 2013). "c-Jun-mediated anticancer mechanisms of tylophorine". Carcinogenesis. 34 (6): 1304–14. doi:10.1093/carcin/bgt039. PMID 23385061.
  28. ^ Newell CL, Deisseroth AB, Lopez-Berestein G (juli 1994). "Interaction of nuclear proteins with an AP-1/CRE-like promoter sequence in the human TNF-alpha gene". Journal of Leukocyte Biology. 56 (1): 27–35. doi:10.1002/jlb.56.1.27. PMID 8027667. S2CID 85570533.
  29. ^ Kara CJ, Liou HC, Ivashkiv LB, Glimcher LH (april 1990). "A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain". Molecular and Cellular Biology. 10 (4): 1347–57. doi:10.1128/MCB.10.4.1347. PMC 362236. PMID 2320002.
  30. ^ a b Hai T, Curran T (maj 1991). "Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity". Proceedings of the National Academy of Sciences of the United States of America. 88 (9): 3720–4. Bibcode:1991PNAS...88.3720H. doi:10.1073/pnas.88.9.3720. PMC 51524. PMID 1827203.
  31. ^ Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH, Gleave ME (juli 1997). "Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP". The Journal of Biological Chemistry. 272 (28): 17485–94. doi:10.1074/jbc.272.28.17485. PMID 9211894.
  32. ^ Jung DJ, Sung HS, Goo YW, Lee HM, Park OK, Jung SY, Lim J, Kim HJ, Lee SK, Kim TS, Lee JW, Lee YC (juli 2002). "Novel transcription coactivator complex containing activating signal cointegrator 1". Molecular and Cellular Biology. 22 (14): 5203–11. doi:10.1128/MCB.22.14.5203-5211.2002. PMC 139772. PMID 12077347.
  33. ^ Pearson AG, Gray CW, Pearson JF, Greenwood JM, During MJ, Dragunow M (decembar 2003). "ATF3 enhances c-Jun-mediated neurite sprouting". Brain Research. Molecular Brain Research. 120 (1): 38–45. doi:10.1016/j.molbrainres.2003.09.014. PMID 14667575.
  34. ^ Chen BP, Wolfgang CD, Hai T (mart 1996). "Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10". Molecular and Cellular Biology. 16 (3): 1157–68. doi:10.1128/MCB.16.3.1157. PMC 231098. PMID 8622660.
  35. ^ Na SY, Choi JE, Kim HJ, Jhun BH, Lee YC, Lee JW (oktobar 1999). "Bcl3, an IkappaB protein, stimulates activating protein-1 transactivation and cellular proliferation". The Journal of Biological Chemistry. 274 (40): 28491–6. doi:10.1074/jbc.274.40.28491. PMID 10497212.
  36. ^ Vasanwala FH, Kusam S, Toney LM, Dent AL (august 2002). "Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene". Journal of Immunology. 169 (4): 1922–9. doi:10.4049/jimmunol.169.4.1922. PMID 12165517.
  37. ^ Hu YF, Li R (juni 2002). "JunB potentiates function of BRCA1 activation domain 1 (AD1) through a coiled-coil-mediated interaction". Genes & Development. 16 (12): 1509–17. doi:10.1101/gad.995502. PMC 186344. PMID 12080089.
  38. ^ Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, Ui M, Murakami M, Iba H (januar 2001). "Identification of SWI.SNF complex subunit BAF60a as a determinant of the transactivation potential of Fos/Jun dimers". The Journal of Biological Chemistry. 276 (4): 2852–7. doi:10.1074/jbc.M009633200. PMID 11053448.
  39. ^ a b Pognonec P, Boulukos KE, Aperlo C, Fujimoto M, Ariga H, Nomoto A, Kato H (maj 1997). "Cross-family interaction between the bHLHZip USF and bZip Fra1 proteins results in down-regulation of AP1 activity". Oncogene. 14 (17): 2091–8. doi:10.1038/sj.onc.1201046. PMID 9160889.
  40. ^ Glover JN, Harrison SC (januar 1995). "Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA". Nature. 373 (6511): 257–61. Bibcode:1995Natur.373..257G. doi:10.1038/373257a0. PMID 7816143. S2CID 4276971.
  41. ^ a b Yang X, Chen Y, Gabuzda D (septembar 1999). "ERK MAP kinase links cytokine signals to activation of latent HIV-1 infection by stimulating a cooperative interaction of AP-1 and NF-kappaB". The Journal of Biological Chemistry. 274 (39): 27981–8. doi:10.1074/jbc.274.39.27981. PMID 10488148.
  42. ^ Nomura N, Zu YL, Maekawa T, Tabata S, Akiyama T, Ishii S (februar 1993). "Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1". The Journal of Biological Chemistry. 268 (6): 4259–66. doi:10.1016/S0021-9258(18)53604-8. PMID 8440710.
  43. ^ Finkel T, Duc J, Fearon ER, Dang CV, Tomaselli GF (januar 1993). "Detection and modulation in vivo of helix-loop-helix protein-protein interactions". The Journal of Biological Chemistry. 268 (1): 5–8. doi:10.1016/S0021-9258(18)54105-3. PMID 8380166.
  44. ^ a b c Venugopal R, Jaiswal AK (decembar 1998). "Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes". Oncogene. 17 (24): 3145–56. doi:10.1038/sj.onc.1202237. PMID 9872330.
  45. ^ a b Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (august 1998). "Casein kinase II interacts with the bZIP domains of several transcription factors". Nucleic Acids Research. 26 (16): 3854–61. doi:10.1093/nar/26.16.3854. PMC 147779. PMID 9685505.
  46. ^ Claret FX, Hibi M, Dhut S, Toda T, Karin M (oktobar 1996). "A new group of conserved coactivators that increase the specificity of AP-1 transcription factors". Nature. 383 (6599): 453–7. Bibcode:1996Natur.383..453C. doi:10.1038/383453a0. PMID 8837781. S2CID 4353893.
  47. ^ Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S (oktobar 1998). "CBP alleviates the intramolecular inhibition of ATF-2 function". The Journal of Biological Chemistry. 273 (44): 29098–105. doi:10.1074/jbc.273.44.29098. PMID 9786917.
  48. ^ Westermarck J, Weiss C, Saffrich R, Kast J, Musti AM, Wessely M, Ansorge W, Séraphin B, Wilm M, Valdez BC, Bohmann D (februar 2002). "The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription". The EMBO Journal. 21 (3): 451–60. doi:10.1093/emboj/21.3.451. PMC 125820. PMID 11823437.
  49. ^ Ubeda M, Vallejo M, Habener JF (novembar 1999). "CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins". Molecular and Cellular Biology. 19 (11): 7589–99. doi:10.1128/MCB.19.11.7589. PMC 84780. PMID 10523647.
  50. ^ Verger A, Buisine E, Carrère S, Wintjens R, Flourens A, Coll J, Stéhelin D, Duterque-Coquillaud M (maj 2001). "Identification of amino acid residues in the ETS transcription factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation" (PDF). The Journal of Biological Chemistry. 276 (20): 17181–9. doi:10.1074/jbc.M010208200. PMID 11278640. S2CID 32288807.
  51. ^ Basuyaux JP, Ferreira E, Stéhelin D, Butticè G (oktobar 1997). "The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner". The Journal of Biological Chemistry. 272 (42): 26188–95. doi:10.1074/jbc.272.42.26188. PMID 9334186.
  52. ^ a b Franklin CC, McCulloch AV, Kraft AS (februar 1995). "In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB". The Biochemical Journal. 305 (Pt 3): 967–74. doi:10.1042/bj3050967. PMC 1136352. PMID 7848298.
  53. ^ Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K (decembar 2003). "Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling". The EMBO Journal. 22 (23): 6277–88. doi:10.1093/emboj/cdg605. PMC 291846. PMID 14633987.
  54. ^ Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (septembar 1998). "ASK1 is essential for JNK/SAPK activation by TRAF2". Molecular Cell. 2 (3): 389–95. doi:10.1016/S1097-2765(00)80283-X. PMID 9774977.
  55. ^ Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (mart 1994). "JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain". Cell. 76 (6): 1025–37. doi:10.1016/0092-8674(94)90380-8. PMID 8137421. S2CID 6797795.
  56. ^ Yazgan O, Pfarr CM (august 2002). "Regulation of two JunD isoforms by Jun N-terminal kinases". The Journal of Biological Chemistry. 277 (33): 29710–8. doi:10.1074/jbc.M204552200. PMID 12052834.
  57. ^ Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, Hashimoto H, Mak TW, Yagita H, Okumura K, Yeh WC, Nakano H (septembar 2001). "Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death". The Journal of Biological Chemistry. 276 (39): 36530–4. doi:10.1074/jbc.M104837200. PMID 11479302.
  58. ^ Meyer CF, Wang X, Chang C, Templeton D, Tan TH (april 1996). "Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating kappaB enhancer activation". The Journal of Biological Chemistry. 271 (15): 8971–6. doi:10.1074/jbc.271.15.8971. PMID 8621542.
  59. ^ Cano E, Hazzalin CA, Kardalinou E, Buckle RS, Mahadevan LC (novembar 1995). "Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction". Journal of Cell Science. 108 (Pt 11): 3599–609. doi:10.1242/jcs.108.11.3599. PMID 8586671.
  60. ^ Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ (juli 1997). "Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase". Proceedings of the National Academy of Sciences of the United States of America. 94 (14): 7337–42. Bibcode:1997PNAS...94.7337T. doi:10.1073/pnas.94.14.7337. PMC 23822. PMID 9207092.
  61. ^ Bengal E, Ransone L, Scharfmann R, Dwarki VJ, Tapscott SJ, Weintraub H, Verma IM (februar 1992). "Functional antagonism between c-Jun and MyoD proteins: a direct physical association". Cell. 68 (3): 507–19. doi:10.1016/0092-8674(92)90187-H. PMID 1310896. S2CID 44966899.
  62. ^ Moreau A, Yotov WV, Glorieux FH, St-Arnaud R (mart 1998). "Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription". Molecular and Cellular Biology. 18 (3): 1312–21. doi:10.1128/MCB.18.3.1312. PMC 108844. PMID 9488446.
  63. ^ Zhong H, Zhu J, Zhang H, Ding L, Sun Y, Huang C, Ye Q (decembar 2004). "COBRA1 inhibits AP-1 transcriptional activity in transfected cells". Biochemical and Biophysical Research Communications. 325 (2): 568–73. doi:10.1016/j.bbrc.2004.10.079. PMID 15530430.
  64. ^ Lee SK, Kim JH, Lee YC, Cheong J, Lee JW (april 2000). "Silencing mediator of retinoic acid and thyroid hormone receptors, as a novel transcriptional corepressor molecule of activating protein-1, nuclear factor-kappaB, and serum response factor". The Journal of Biological Chemistry. 275 (17): 12470–4. doi:10.1074/jbc.275.17.12470. PMID 10777532.
  65. ^ Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW (novembar 1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". The Journal of Biological Chemistry. 274 (48): 34283–93. doi:10.1074/jbc.274.48.34283. PMID 10567404.
  66. ^ Lee SK, Na SY, Jung SY, Choi JE, Jhun BH, Cheong J, Meltzer PS, Lee YC, Lee JW (juni 2000). "Activating protein-1, nuclear factor-kappaB, and serum response factor as novel target molecules of the cancer-amplified transcription coactivator ASC-2". Molecular Endocrinology. 14 (6): 915–25. doi:10.1210/mend.14.6.0471. PMID 10847592.
  67. ^ Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY, Lee JW (juli 1998). "Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits". The Journal of Biological Chemistry. 273 (27): 16651–4. doi:10.1074/jbc.273.27.16651. PMID 9642216.
  68. ^ Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP (juli 2001). "Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1". The EMBO Journal. 20 (13): 3459–72. doi:10.1093/emboj/20.13.3459. PMC 125530. PMID 11432833.
  69. ^ Jung DJ, Na SY, Na DS, Lee JW (januar 2002). "Molecular cloning and characterization of CAPER, a novel coactivator of activating protein-1 and estrogen receptors". The Journal of Biological Chemistry. 277 (2): 1229–34. doi:10.1074/jbc.M110417200. PMID 11704680.
  70. ^ Nishitani J, Nishinaka T, Cheng CH, Rong W, Yokoyama KK, Chiu R (februar 1999). "Recruitment of the retinoblastoma protein to c-Jun enhances transcription activity mediated through the AP-1 binding site". The Journal of Biological Chemistry. 274 (9): 5454–61. doi:10.1074/jbc.274.9.5454. PMID 10026157.
  71. ^ Wertz IE, O'Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, Dixit VM (februar 2004). "Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase" (PDF). Science. 303 (5662): 1371–4. Bibcode:2004Sci...303.1371W. doi:10.1126/science.1093549. PMID 14739464. S2CID 40501515.
  72. ^ Bianchi E, Denti S, Catena R, Rossetti G, Polo S, Gasparian S, Putignano S, Rogge L, Pardi R (maj 2003). "Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity". The Journal of Biological Chemistry. 278 (22): 19682–90. doi:10.1074/jbc.M212681200. PMID 12615916.
  73. ^ a b Hess J, Porte D, Munz C, Angel P (juni 2001). "AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element". The Journal of Biological Chemistry. 276 (23): 20029–38. doi:10.1074/jbc.M010601200. PMID 11274169.
  74. ^ a b D'Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC (januar 2002). "Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation". The Journal of Biological Chemistry. 277 (1): 816–22. doi:10.1074/jbc.M107082200. PMID 11641401.
  75. ^ Zhang Y, Feng XH, Derynck R (august 1998). "Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription". Nature. 394 (6696): 909–13. Bibcode:1998Natur.394..909Z. doi:10.1038/29814. PMID 9732876. S2CID 4393852.
  76. ^ Verrecchia F, Pessah M, Atfi A, Mauviel A (septembar 2000). "Tumor necrosis factor-alpha inhibits transforming growth factor-beta /Smad signaling in human dermal fibroblasts via AP-1 activation". The Journal of Biological Chemistry. 275 (39): 30226–31. doi:10.1074/jbc.M005310200. PMID 10903323.
  77. ^ Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang XF (april 1999). "Smads bind directly to the Jun family of AP-1 transcription factors". Proceedings of the National Academy of Sciences of the United States of America. 96 (9): 4844–9. Bibcode:1999PNAS...96.4844L. doi:10.1073/pnas.96.9.4844. PMC 21779. PMID 10220381.
  78. ^ a b Zhang X, Wrzeszczynska MH, Horvath CM, Darnell JE (oktobar 1999). "Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation". Molecular and Cellular Biology. 19 (10): 7138–46. doi:10.1128/MCB.19.10.7138. PMC 84707. PMID 10490649.
  79. ^ Pessah M, Prunier C, Marais J, Ferrand N, Mazars A, Lallemand F, Gauthier JM, Atfi A (maj 2001). "c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity". Proceedings of the National Academy of Sciences of the United States of America. 98 (11): 6198–203. Bibcode:2001PNAS...98.6198P. doi:10.1073/pnas.101579798. PMC 33445. PMID 11371641.

Dopunska literatura

uredi

Vanjski linkovi

uredi