Amiloidni prekursorski protein

(Preusmjereno sa APP)

Amiloidni prekursorski protein (APP) je integralni membranski protein eksprimiran u mnogim tkivima i koncentriran u sinapsama neurona. Funkcioniše kao receptor ćelijske površine[5] i impliciran je kao regulator formiranja sinapsi,[6] plastičnost,[7] antimikrobu aktivnost,[8] i eksport gvožđa.[9] Kodiran je genom APP i reguliran prezentacijom supstrata.[10] APP je najpoznatiji kao prekursorska molekula čija proteoliza stvara amiloid beta (Aβ), polipeptid koji sadrži 37 do 49 aminokiselinskih ostataka, čiji amiloidni vlaknasti oblik je primarna komponenta amiloidnog plaka koji se nalazi u mozgu pacijenata s Alzheimerovom bolešću.

APP
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

1AAP, 1AMB, 1AMC, 1AML, 1BA4, 1BA6, 1BJB, 1BJC, 1BRC, 1CA0, 1HZ3, 1IYT, 1MWP, 1OWT, 1QCM, 1QWP, 1QXC, 1QYT, 1TAW, 1TKN, 1X11, 1Z0Q, 1ZJD, 2BEG, 2BP4, 2FJZ, 2FK1, 2FK2, 2FK3, 2FKL, 2FMA, 2G47, 2IPU, 2LFM, 2LLM, 2LMN, 2LMO, 2LMP, 2LMQ, 2LOH, 2LP1, 2OTK, 2R0W, 2WK3, 2Y29, 2Y2A, 2Y3J, 2Y3K, 2Y3L, 3AYU, 3DXC, 3DXD, 3DXE, 3GCI, 3IFL, 3IFN, 3IFO, 3IFP, 3JTI, 3KTM, 3L33, 3L81, 3MOQ, 3NYL, 3SV1, 3U0T, 3UMH, 3UMI, 3UMK, 4HIX, 1ZE7, 1ZE9, 2LNQ, 2LZ3, 2LZ4, 2M4J, 2M9R, 2M9S, 2MGT, 2MJ1, 2MPZ, 2MVX, 2MXU, 3BAE, 3BKJ, 3JQ5, 3JQL, 3MXC, 3NYJ, 3OVJ, 3OW9, 4JFN, 4M1C, 4MDR, 4NGE, 4OJF, 4ONF, 4ONG, 4PQD, 4PWQ, 4MVI, 4MVK, 4MVL, 4XXD, 5CSZ, 5AMB, 5AEF, 5AM8, 5BUO, 5HOY, 5HOW, 5HOX, 5KK3, 5C67, 2NAO

Identifikatori
AliasiAPP
Vanjski ID-jeviOMIM: 104760 MGI: 88059 HomoloGene: 56379 GeneCards: APP
Lokacija gena (čovjek)
Hromosom 21 (čovjek)
Hrom.Hromosom 21 (čovjek)[1]
Hromosom 21 (čovjek)
Genomska lokacija za APP
Genomska lokacija za APP
Bend21q21.3Početak25,880,550 bp[1]
Kraj26,171,128 bp[1]
Lokacija gena (miš)
Hromosom 16 (miš)
Hrom.Hromosom 16 (miš)[2]
Hromosom 16 (miš)
Genomska lokacija za APP
Genomska lokacija za APP
Bend16 C3.3|16 46.92 cMPočetak84,746,573 bp[2]
Kraj84,970,654 bp[2]
Obrazac RNK ekspresije




Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija heparin binding
signaling receptor binding
acetylcholine receptor binding
vezivanje iona metala
vezivanje enzima
peptidase activator activity
peptidase inhibitor activity
GO:0001948, GO:0016582 vezivanje za proteine
vezivanje sa DNK
growth factor receptor binding
PTB domain binding
serine-type endopeptidase inhibitor activity
vezivanje identičnih proteina
transition metal ion binding
signaling receptor activator activity
Ćelijska komponenta citoplazma
endozom
citosol
trans-Golgi network membrane
membrana
cell-cell junction
sinapsa
extracellular region
ciliary rootlet
spindle midzone
neuron projection
rough endoplasmic reticulum
dendritična kičma
endosome lumen
dendritic shaft
cell surface
terminal bouton
Lipidni splav
Egzosom
integral component of membrane
Golđijev aparat
growth cone
Nervno-mišićna veza
receptor complex
ćelijska membrana
apical part of cell
astrocyte projection
growth cone lamellipodium
Akson
nuclear envelope lumen
clathrin-coated pit
platelet alpha granule lumen
integral component of plasma membrane
main axon
smooth endoplasmic reticulum
COPII-coated ER to Golgi transport vesicle
growth cone filopodium
GO:0016023 citoplazmatska vezikula
Vanćelijsko
Golgi lumen
perinuklearno područje citoplazme
early endosome
endoplasmic reticulum lumen
Golgi-associated vesicle
projekcija ćelije
perikaryon
presynaptic active zone
reciklirajući endosom
jedro
Sinapsna vezikula
Biološki proces cellular response to nerve growth factor stimulus
amyloid fibril formation
negative regulation of neuron differentiation
neuromuscular process controlling balance
protein phosphorylation
regulation of epidermal growth factor-activated receptor activity
cellular copper ion homeostasis
neuron projection development
cellular response to cAMP
suckling behavior
GO:0097285 apoptoza
locomotory behavior
adult locomotory behavior
positive regulation of mitotic cell cycle
axo-dendritic transport
GO:0001306 response to oxidative stress
mRNA polyadenylation
collateral sprouting in absence of injury
ionotropic glutamate receptor signaling pathway
Notch signaling pathway
negative regulation of peptidase activity
smooth endoplasmic reticulum calcium ion homeostasis
synaptic assembly at neuromuscular junction
neuron remodeling
dendrite development
extracellular matrix organization
cholesterol metabolic process
mating behavior
cellular response to norepinephrine stimulus
nervous system development
Ćelijska adhezija
response to lead ion
Regulacija ekspresije gena
positive regulation of G2/M transition of mitotic cell cycle
axon midline choice point recognition
visual learning
Endocitoza
axonogenesis
regulation of multicellular organism growth
platelet degranulation
positive regulation of peptidase activity
forebrain development
regulation of protein binding
regulation of translation
regulation of synapse structure or activity
GO:0006928 cellular process
GO:0003257, GO:0010735, GO:1901228, GO:1900622, GO:1904488 positive regulation of transcription by RNA polymerase II
negative regulation of endopeptidase activity
response to yeast
antibacterial humoral response
antifungal humoral response
Urođeni imunski sistem
GO:0051636 defense response to Gram-negative bacterium
GO:0051637 defense response to Gram-positive bacterium
neuron apoptotic process
positive regulation of protein phosphorylation
astrocyte activation involved in immune response
G protein-coupled receptor signaling pathway
learning or memory
Učenje
negative regulation of cell population proliferation
response to radiation
GO:1901313 positive regulation of gene expression
negative regulation of gene expression
positive regulation of peptidyl-threonine phosphorylation
microglia development
regulation of Wnt signaling pathway
positive regulation of protein binding
tumor necrosis factor production
positive regulation of peptidyl-serine phosphorylation
positive regulation of phosphorylation
Posttranslacione modifikacije
positive regulation of JNK cascade
astrocyte activation
regulation of long-term neuronal synaptic plasticity
regulation of peptidyl-tyrosine phosphorylation
synapse organization
kognitivna funkcija
positive regulation of DNA-binding transcription factor activity
positive regulation of NF-kappaB transcription factor activity
positive regulation of astrocyte activation
positive regulation of ERK1 and ERK2 cascade
cellular response to copper ion
cellular response to manganese ion
modulation of excitatory postsynaptic potential
regulation of spontaneous synaptic transmission
negative regulation of long-term synaptic potentiation
positive regulation of long-term synaptic potentiation
positive regulation of NIK/NF-kappaB signaling
positive regulation of amyloid-beta formation
positive regulation of microglial cell activation
cellular response to amyloid-beta
negative regulation of low-density lipoprotein receptor activity
regulation of presynapse assembly
positive regulation of amyloid fibril formation
neuron projection maintenance
positive regulation of signaling receptor activity
regulation of NMDA receptor activity
positive regulation of T cell migration
response to interleukin-1
positive regulation of glycolytic process
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)
NM_201414
NM_000484
NM_001136016
NM_001136129
NM_001136130

NM_001136131
NM_001204301
NM_001204302
NM_001204303
NM_201413
NM_001385253

NM_001198823
NM_001198824
NM_001198825
NM_001198826
NM_007471

RefSeq (bjelančevina)
NP_000475
NP_001129488
NP_001129601
NP_001129602
NP_001129603

NP_001191230
NP_001191231
NP_001191232
NP_958816
NP_958817

NP_001185752
NP_001185753
NP_001185754
NP_001185755
NP_031497

Lokacija (UCSC)Chr 21: 25.88 – 26.17 MbChr 16: 84.75 – 84.97 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš
Mehanizam formiranja amiloidnih fibrila
Metabolizam APP putem enzima sekretaza[5][6]

Genetika

uredi

Amiloid-beta prekursorski protein je drevna i visoko konzervirani protein.[11] U ljudi, gen APP nalazi se na hromosomu 21 i sadrži 18 egzona koji obuhvataju 290 kilobaza.[12][13] Kod ljudi primijećeno je nekoliko alternativno prerađenih izoformi APP-a, u rasponu dužine od 639 do 770 aminokiselina, s određenim izoformama prvenstveno eksprimiranim u neuronima; promjene u neuronskom omjeru ovih izoformi povezane su s Alzhheimerovom bolešću.[14] Homologni proteini identifikovani su u drugim organizmima kao što su u rodu Drosophila (vinske mušice), C. elegans (oble gliste),[15] i svi sisari.[16] Amiloidna beta regija proteina, koja se nalazi u domenu koji se prostire na membrani, nije dobro konzervirana među vrstama i nema očiglednu vezu sa biološkim funkcijama APP-a u nativnom stanju.[16]

Mutacije u kritičnim regijama amiloidnog prekursora proteina, uključujući regiju koja stvara amiloid-beta (Aβ), uzrokuju porodičnu osjetljivost na Alzheimerovu bolest.[17][18][19][20] Naprimjer, otkriveno je da nekoliko mutacija izvan Aβ regije povezanih s porodičnom Alzhejmerovom bolešću dramatično povećava proizvodnju Aβ.[21]

Mutacija A673T u APP genu štiti od Alzheimerove bolesti. Ova zamjena je u blizini mjesta cijepanja beta sekretaze i rezultira smanjenjem od 40% u stvaranju beta amiloida in vitro.[22]

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 770 aminokiselina, a molekulska težina 86.943 Da.[5]

1020304050
MLPGLALLLLAAWTARALEVPTDGNAGLLAEPQIAMFCGRLNMHMNVQNG
KWDSDPSGTKTCIDTKEGILQYCQEVYPELQITNVVEANQPVTIQNWCKR
GRKQCKTHPHFVIPYRCLVGEFVSDALLVPDKCKFLHQERMDVCETHLHW
HTVAKETCSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPLAEESDNVDSAD
AEEDDSDVWWGGADTDYADGSEDKVVEVAEEEEVAEVEEEEADDDEDDED
GDEVEEEAEEPYEEATERTTSIATTTTTTTESVEEVVREVCSEQAETGPC
RAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTEEYCMAVCGSAMSQSLL
KTTQEPLARDPVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERLEA
KHRERMSQVMREWEEAERQAKNLPKADKKAVIQHFQEKVESLEQEAANER
QQLVETHMARVEAMLNDRRRLALENYITALQAVPPRPRHVFNMLKKYVRA
EQKDRQHTLKHFEHVRMVDPKKAAQIRSQVMTHLRVIYERMNQSLSLLYN
VPAVAEEIQDEVDELLQKEQNYSDDVLANMISEPRISYGNDALMPSLTET
KTTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEPVDARPAADRGL
TTRPGSGLTNIKTEEISEVKMDAEFRHDSGYEVHHQKLVFFAEDVGSNKG
AIIGLMVGGVVIATVIVITLVMLKKKQYTSIHHGVVEVDAAVTPEERHLS
KMQQNGYENPTYKFFEQMQN

Struktura

uredi
 
Metal-vezujući domen APP sa vezanim bakarnin ionom. Bočni lanac dva ostatka histidina i jednog tirozina koji imaju ulogu u koordinaciji metala prikazani su u vezanim Cu(I), vezanim Cu(II) i nevezanim konformacijama, koji se razlikuju samo po malim promjenama u orijentaciji.
 
Vanćelijski E2 domen, dimerna upredena zavojnica i jedan od najkonzerviranijih regiona proteina od Drosophila do ljudi. Smatra se da ovaj domen, koji liči na strukturu spektrina, veže heparan-sulfatne proteoglikane.[23]

U APP sekvenci je identifikovan niz različitih, uglavnom nezavisno-sklopljenih strukturnih domena. Vanćelijska regija, mnogo veću od unutarćelijske regije, podijeljena je na E1 i E2 domene, povezane kiselim domenom (AcD); E1 sadrži dva poddomena uključujući domen sličan faktoru rasta (GFLD) i bakar-vezujući domen (CuBD) koji međusobno čvrsto djeluju.[24] Domen inhibitora serinske proteaze, odsutan iz izoforme različito eksprimirane u mozgu, nalazi se između kiselog područja i E2 domena.[25] Kompletna kristalna struktura APP-a još nije riješena. Međutim, pojedinačni domeni su uspješno kristalizirani poput: domen sličan faktoru rasta,[26], domena koja veže bakar[27] kompletna E1 domena[24] i domen E2.[23]

Funkcija

uredi

Iako je izvorna biološka uloga APP-a od očiglednog interesa za istraživanje Alzheimerove bolesti, temeljito razumijevanje je ostalo nedostižno.

Formiranje i popravak sinapsi

uredi

Najvažnija uloga APP-a je u m formiranju i popravljanju sinapsi;[6] njegova ekspresija je nadregulirana tokom neuronske diferencijacije i nakon nervne ozljede. Uloge u ćelijskoj signalizaciji, dugotrajnoj potenciaciji i ćelijskoj adheziji predložene su i podržane još ograničenim istraživanjem.[16] Konkretno, sličnosti u posttranslacijskoj obradi pozvali su na poređenja sa signalnom ulogom površinskog receptorskog proteina Notch.[28]

APP nokaut-miševi su održivi i imaju relativno male fenotipske efekte, uključujući oštećeno dugotrajno potenciranje i gubitak pamćenja bez općeg gubitka neurona.[29] S druge strane, zabilježeno je da transgeni miševi s povećanom ekspresijom APP-a pokazuju smanjenu dugotrajnu potencijaciju.[30]

Logičan zaključak je da bi, budući da se Aβ prekomjerno akumulira kod Alzheimerove bolesti, njegov prekursor, APP, također bio povišen. Međutim, tijela neuronskih ćelija sadrže manje APP kao funkciju njihove blizine amiloidnim plakovima.[31] Podaci pokazuju da je ovaj deficit u APP-u posljedica pada proizvodnje, a ne povećanja katalize. Gubitak APP neurona može uticati na fiziološke deficite koji doprinose demenciji.

Somatska rekombinacija

uredi

U neuronima ljudskog mozga, u genu koji kodira APP česta je somatska rekombinacija.[32] Neuroni osoba sa sporadičnom Alzheimmerovom bolešću pokazuju veću raznolikost gena APP zbog somatske rekombinacije nego neuroni zdravih osoba.[32]

Anterogradni neuronski transport

uredi

Molekule sintetizirane u ćelijskim tijelima neurona moraju se prenijeti prema van do distalnih sinapsi. Ovo se postiže putem brzog anterogradnog transporta. Utvrđeno je da APP može posredovati u interakciji između tereta i kinezina i na taj način olakšati ovaj transport. Konkretno, kratka peptidna sekvenca od 15 aminokiselina sa citoplazmatskog karboksi-terminala neophodna je za interakciju sa motornim proteinom.[33]

Dodatno, pokazalo se da je interakcija između APP i kinezina specifična za peptidnu sekvencu APP-a.[34] U nedavnom eksperimentu koji je uključivao transport obojenih kuglica, kontrole su konjugirane na jednu aminokiselinu, glicin, tako da pokazuju istu terminalnu grupu karboksilne kiseline kao APP bez intervencije gorepomenute 15-aminokiselinske sekvenca. Kontrolne kuglice nisu bile pokretne, što je pokazalo da terminalni COOH dio peptida nije dovoljan da posreduje u transportu.

Eksport gvožđa

uredi

Drugačiju perspektivu na Alzheimerovu bolest otkriva studija na mišu koja je otkrila da APP posjeduje feroksidaznu aktivnost sličnu ceruloplazminu, olakšavajući metabolizam i eksport gvožđa kroz interakciju sa feroportinom; čini se da je ova aktivnost blokirana cinkom zarobljenim akumuliranim Aβ kod Alzheimerove bolesti.[9] Pokazalo se da jednonukleotidni polimorfizam u 5' UTR-u APP iRNK može poremetiti njegovu translaciju.[35]

Hipoteza da APP ima aktivnost feroksidaze u domenu E2 i olakšava eksport Fe(II) je vjerovatno netačna jer predloženo mjesto feroksidaze APP u E2 domenu nema aktivnost feroksidaze.[36][37]

Kako APP ne posjeduje aktivnost feroksidaze unutar svog E2 domena, mehanizam APP-moduliranog efluksa gvožđa iz feroportina bio je pod kontrolom. Jedan model sugerira da APP djeluje na stabilizaciju proteina feroportina koji izlijeva gvožđe u ćelijskim plazmamembranama, čime se povećava ukupan broj feroportinskih molekula na membrani. Ovi transporteri gvožđa se zatim mogu aktivirati poznatim feroksidazama sisara (tj. ceruloplazminom ili hefestinom).[38]

Hormonska regulacija

uredi

Amiloid-β prekursorski protein (AβPP), i sve povezane sekretaze, eksprimiraju se u ranoj fazi razvoja i imaju ključnu ulogu u endokrinologiji reprodukcije – uz diferencijalnu obradu AβPP sekretazama koje regulišu proliferaciju ljudskih embrionskih matičnih ćelija (hESC) kao i njihovu diferencijaciju u nervne prekursorske ćelije (NPC). Hormon trudnoće ljudski horionski gonadotropin (hCG) povećava ekspresiju AβPP [39] i proliferaciju hESC-a, dok progesteron usmjerava preradu AβPP prema neamiloidogenom putu, koji promovira diferencijaciju hESC-a u NPC.[40][41][42]

AβPP i njegovi proizvodi cijepanja ne promovišu proliferaciju i diferencijaciju postmitotskih neurona; prije će biti da prekomjerna ekspresija bilo divljeg tipa ili mutantnog AβPP u postmitotskim neuronima inducira apoptozhnu smrt nakon njihovog ponovnog ulaska u ćelijski ciklus.[43] Pretpostavlja se da je gubitak spolnih steroida (uključujući progesteron), ali i povećanje razine luteinizirajućeg hormona, ekvivalent hCG-a za odrasle, nakon menopauze i tokom andropauze pokreće proizvodnju amiloida-β[44] i ponovni ulazak postmitotskih neurona u ćelijski ciklus.

Interakcije

uredi

Pokazalo se da protein prekursor amiloida reaguje sa:

APP stupa u interakciju i s reelinom, proteinom koji je uključen u brojne poremećaje mozga, uključujući Alzheimerovu bolest.[65]

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000142192 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000022892 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c "Amyloid-beta precursor protein". Pristupljeno 10. 1. 2021.
  6. ^ a b c Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (Jul 2006). "Synapse formation and function is modulated by the amyloid precursor protein". The Journal of Neuroscience. 26 (27): 7212–21. doi:10.1523/JNEUROSCI.1450-06.2006. PMC 6673945. PMID 16822978.
  7. ^ Turner PR, O'Connor K, Tate WP, Abraham WC (maj 2003). "Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory". Progress in Neurobiology. 70 (1): 1–32. doi:10.1016/S0301-0082(03)00089-3. PMID 12927332. S2CID 25376584.
  8. ^ Moir RD, Lathe R, Tanzi RE (2018). "The antimicrobial protection hypothesis of Alzheimer's disease". Alzheimer's & Dementia. 14 (12): 1602–1614. doi:10.1016/j.jalz.2018.06.3040. PMID 30314800.
  9. ^ a b Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI (Sep 2010). "Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease". Cell. 142 (6): 857–67. doi:10.1016/j.cell.2010.08.014. PMC 2943017. PMID 20817278.
  10. ^ Wang, Hao; Kulas, Joshua A.; Wang, Chao; Holtzman, David M.; Ferris, Heather A.; Hansen, Scott B. (17. 8. 2021). "Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol". Proceedings of the National Academy of Sciences. 118 (33): e2102191118. doi:10.1073/pnas.2102191118. PMC 8379952 Provjerite vrijednost parametra |pmc= (pomoć). PMID 34385305 Provjerite vrijednost parametra |pmid= (pomoć).
  11. ^ Tharp WG, Sarkar IN (april 2013). "Origins of amyloid-β". BMC Genomics. 14 (1): 290. doi:10.1186/1471-2164-14-290. PMC 3660159. PMID 23627794.
  12. ^ Yoshikai S, Sasaki H, Doh-ura K, Furuya H, Sakaki Y (Mar 1990). "Genomic organization of the human amyloid beta-protein precursor gene". Gene. 87 (2): 257–63. doi:10.1016/0378-1119(90)90310-N. PMID 2110105.
  13. ^ Lamb BT, Sisodia SS, Lawler AM, Slunt HH, Kitt CA, Kearns WG, Pearson PL, Price DL, Gearhart JD (Sep 1993). "Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice [corrected]". Nature Genetics. 5 (1): 22–30. doi:10.1038/ng0993-22. PMID 8220418. S2CID 42752531.
  14. ^ Matsui T, Ingelsson M, Fukumoto H, Ramasamy K, Kowa H, Frosch MP, Irizarry MC, Hyman BT (Aug 2007). "Expression of APP pathway mRNAs and proteins in Alzheimer's disease". Brain Research. 1161: 116–23. doi:10.1016/j.brainres.2007.05.050. PMID 17586478. S2CID 26901380.
  15. ^ Ewald, Collin Y.; Li, Chris (1. 4. 2012). "Caenorhabditis elegans as a model organism to study APP function". Experimental Brain Research (jezik: engleski). 217 (3–4): 397–411. doi:10.1007/s00221-011-2905-7. ISSN 0014-4819. PMC 3746071. PMID 22038715.
  16. ^ a b c Zheng H, Koo EH (2006). "The amyloid precursor protein: beyond amyloid". Molecular Neurodegeneration. 1 (1): 5. doi:10.1186/1750-1326-1-5. PMC 1538601. PMID 16930452.
  17. ^ Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L (Feb 1991). "Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease". Nature. 349 (6311): 704–6. Bibcode:1991Natur.349..704G. doi:10.1038/349704a0. PMID 1671712. S2CID 4336069.
  18. ^ Murrell J, Farlow M, Ghetti B, Benson MD (Oct 1991). "A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease". Science. 254 (5028): 97–9. Bibcode:1991Sci...254...97M. doi:10.1126/science.1925564. PMID 1925564.
  19. ^ Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J (Oct 1991). "Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene". Nature. 353 (6347): 844–6. Bibcode:1991Natur.353..844C. doi:10.1038/353844a0. PMID 1944558. S2CID 4345311.
  20. ^ Lloyd, GM; Trejo-Lopez, JA; Xia, Y; McFarland, KN; Lincoln, SJ; Ertekin-Taner, N; Giasson, BI; Yachnis, AT; Prokop, S (12. 3. 2020). "Prominent amyloid plaque pathology and cerebral amyloid angiopathy in APP V717I (London) carrier - phenotypic variability in autosomal dominant Alzheimer's disease". Acta Neuropathologica Communications. 8 (1): 31. doi:10.1186/s40478-020-0891-3. PMC 7068954. PMID 32164763.
  21. ^ Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (Dec 1992). "Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production". Nature. 360 (6405): 672–4. Bibcode:1992Natur.360..672C. doi:10.1038/360672a0. PMID 1465129. S2CID 4341170.
  22. ^ Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K (Aug 2012). "A mutation in APP protects against Alzheimer's disease and age-related cognitive decline". Nature. 488 (7409): 96–9. Bibcode:2012Natur.488...96J. doi:10.1038/nature11283. PMID 22801501. S2CID 4333449. SažetakThe New York Times.
  23. ^ a b PDB 1RW6; Wang Y, Ha Y (Aug 2004). "The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain". Molecular Cell. 15 (3): 343–53. doi:10.1016/j.molcel.2004.06.037. PMID 15304215.
  24. ^ a b Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs KH, Than ME (Mar 2010). "Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein". Proceedings of the National Academy of Sciences of the United States of America. 107 (12): 5381–6. Bibcode:2010PNAS..107.5381D. doi:10.1073/pnas.0911326107. PMC 2851805. PMID 20212142.
  25. ^ Sisodia SS, Koo EH, Hoffman PN, Perry G, Price DL (Jul 1993). "Identification and transport of full-length amyloid precursor proteins in rat peripheral nervous system". The Journal of Neuroscience. 13 (7): 3136–42. doi:10.1523/JNEUROSCI.13-07-03136.1993. PMC 6576678. PMID 8331390.
  26. ^ Rossjohn J, Cappai R, Feil SC, Henry A, McKinstry WJ, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, Parker MW (Apr 1999). "Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein". Nature Structural Biology. 6 (4): 327–31. doi:10.1038/7562. PMID 10201399. S2CID 30925432.; see also PDB ID 1MWP
  27. ^ Kong GK, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW (Mar 2007). "Structural studies of the Alzheimer's amyloid precursor protein copper-binding domain reveal how it binds copper ions". Journal of Molecular Biology. 367 (1): 148–61. doi:10.1016/j.jmb.2006.12.041. PMID 17239395., 2FK2, 2FKL.
  28. ^ Selkoe D, Kopan R (2003). "Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration". Annual Review of Neuroscience. 26 (1): 565–97. doi:10.1146/annurev.neuro.26.041002.131334. PMID 12730322.
  29. ^ Phinney AL, Calhoun ME, Wolfer DP, Lipp HP, Zheng H, Jucker M (1999). "No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice". Neuroscience. 90 (4): 1207–16. doi:10.1016/S0306-4522(98)00645-9. PMID 10338291. S2CID 6001957.
  30. ^ Matsuyama S, Teraoka R, Mori H, Tomiyama T (2007). "Inverse correlation between amyloid precursor protein and synaptic plasticity in transgenic mice". NeuroReport. 18 (10): 1083–7. doi:10.1097/WNR.0b013e3281e72b18. PMID 17558301. S2CID 34157306.
  31. ^ Barger SW, DeWall KM, Liu L, Mrak RE, Griffin WS (Aug 2008). "Relationships between expression of apolipoprotein E and beta-amyloid precursor protein are altered in proximity to Alzheimer beta-amyloid plaques: potential explanations from cell culture studies". Journal of Neuropathology and Experimental Neurology. 67 (8): 773–83. doi:10.1097/NEN.0b013e318180ec47. PMC 3334532. PMID 18648325.
  32. ^ a b Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C, Kennedy G, Long T, Chun J (novembar 2018). "Somatic APP gene recombination in Alzheimer's disease and normal neurons". Nature. 563 (7733): 639–645. Bibcode:2018Natur.563..639L. doi:10.1038/s41586-018-0718-6. PMC 6391999. PMID 30464338.
  33. ^ Satpute-Krishnan P, DeGiorgis JA, Conley MP, Jang M, Bearer EL (Oct 2006). "A peptide zipcode sufficient for anterograde transport within amyloid precursor protein". Proceedings of the National Academy of Sciences of the United States of America. 103 (44): 16532–7. Bibcode:2006PNAS..10316532S. doi:10.1073/pnas.0607527103. PMC 1621108. PMID 17062754.
  34. ^ Seamster PE, Loewenberg M, Pascal J, Chauviere A, Gonzales A, Cristini V, Bearer EL (Oct 2012). "Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon". Physical Biology. 9 (5): 055005. Bibcode:2012PhBio...9e5005S. doi:10.1088/1478-3975/9/5/055005. PMC 3625656. PMID 23011729.
  35. ^ Rogers JT, Bush AI, Cho HH, Smith DH, Thomson AM, Friedlich AL, Lahiri DK, Leedman PJ, Huang X, Cahill CM (Dec 2008). "Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease". Biochemical Society Transactions. 36 (Pt 6): 1282–7. doi:10.1042/BST0361282. PMC 2746665. PMID 19021541.
  36. ^ Ebrahimi KH, Hagedoorn PL, Hagen WR (2012). "A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron". PLOS ONE. 7 (8): e40287. Bibcode:2012PLoSO...740287E. doi:10.1371/journal.pone.0040287. PMC 3419245. PMID 22916096.
  37. ^ Honarmand Ebrahimi K, Dienemann C, Hoefgen S, Than ME, Hagedoorn PL, Hagen WR (2013). "The amyloid precursor protein (APP) does not have a ferroxidase site in its E2 domain". PLOS ONE. 8 (8): e72177. Bibcode:2013PLoSO...872177H. doi:10.1371/journal.pone.0072177. PMC 3747053. PMID 23977245.
  38. ^ McCarthy RC, Park YH, Kosman DJ (Jul 2014). "sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin". EMBO Reports. 15 (7): 809–15. doi:10.15252/embr.201338064. PMC 4196985. PMID 24867889.
  39. ^ Porayette P, Gallego MJ, Kaltcheva MM, Meethal SV, Atwood CS (Dec 2007). "Amyloid-beta precursor protein expression and modulation in human embryonic stem cells: a novel role for human chorionic gonadotropin". Biochemical and Biophysical Research Communications. 364 (3): 522–7. doi:10.1016/j.bbrc.2007.10.021. PMID 17959150.
  40. ^ Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS (Aug 2009). "Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells". The Journal of Biological Chemistry. 284 (35): 23806–17. doi:10.1074/jbc.M109.026328. PMC 2749153. PMID 19542221.
  41. ^ Gallego MJ, Porayette P, Kaltcheva MM, Meethal SV, Atwood CS (Jun 2009). "Opioid and progesterone signaling is obligatory for early human embryogenesis". Stem Cells and Development. 18 (5): 737–40. doi:10.1089/scd.2008.0190. PMC 2891507. PMID 18803462.
  42. ^ Gallego MJ, Porayette P, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS (2010). "The pregnancy hormones human chorionic gonadotropin and progesterone induce human embryonic stem cell proliferation and differentiation into neuroectodermal rosettes". Stem Cell Research & Therapy. 1 (4): 28. doi:10.1186/scrt28. PMC 2983441. PMID 20836886.
  43. ^ McPhie DL, Coopersmith R, Hines-Peralta A, Chen Y, Ivins KJ, Manly SP, Kozlowski MR, Neve KA, Neve RL (Jul 2003). "DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3". The Journal of Neuroscience. 23 (17): 6914–27. doi:10.1523/JNEUROSCI.23-17-06914.2003. PMC 6740729. PMID 12890786.
  44. ^ Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, Martins RN, Atwood CS (maj 2004). "Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-beta precursor protein and amyloid-beta deposition". The Journal of Biological Chemistry. 279 (19): 20539–45. doi:10.1074/jbc.M311993200. PMID 14871891.
  45. ^ a b c Biederer T, Cao X, Südhof TC, Liu X (Sep 2002). "Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms". The Journal of Neuroscience. 22 (17): 7340–51. doi:10.1523/JNEUROSCI.22-17-07340.2002. PMC 6757996. PMID 12196555.
  46. ^ a b Borg JP, Ooi J, Levy E, Margolis B (Nov 1996). "The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein". Molecular and Cellular Biology. 16 (11): 6229–41. doi:10.1128/mcb.16.11.6229. PMC 231626. PMID 8887653.
  47. ^ a b Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, Kirino Y, Suzuki T (Dec 2003). "Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism". The Journal of Biological Chemistry. 278 (49): 49448–58. doi:10.1074/jbc.M306024200. PMID 12972431.
  48. ^ Tomita S, Ozaki T, Taru H, Oguchi S, Takeda S, Yagi Y, Sakiyama S, Kirino Y, Suzuki T (Jan 1999). "Interaction of a neuron-specific protein containing PDZ domains with Alzheimer's amyloid precursor protein". The Journal of Biological Chemistry. 274 (4): 2243–54. doi:10.1074/jbc.274.4.2243. PMID 9890987.
  49. ^ Tanahashi H, Tabira T (Feb 1999). "X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein". Biochemical and Biophysical Research Communications. 255 (3): 663–7. doi:10.1006/bbrc.1999.0265. PMID 10049767.
  50. ^ Zambrano N, Buxbaum JD, Minopoli G, Fiore F, De Candia P, De Renzis S, Faraonio R, Sabo S, Cheetham J, Sudol M, Russo T (Mar 1997). "Interaction of the phosphotyrosine interaction/phosphotyrosine binding-related domains of Fe65 with wild-type and mutant Alzheimer's beta-amyloid precursor proteins". The Journal of Biological Chemistry. 272 (10): 6399–405. doi:10.1074/jbc.272.10.6399. PMID 9045663.
  51. ^ Guénette SY, Chen J, Jondro PD, Tanzi RE (Oct 1996). "Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein". Proceedings of the National Academy of Sciences of the United States of America. 93 (20): 10832–7. Bibcode:1996PNAS...9310832G. doi:10.1073/pnas.93.20.10832. PMC 38241. PMID 8855266.
  52. ^ Tanahashi H, Tabira T (Feb 1999). "Molecular cloning of human Fe65L2 and its interaction with the Alzheimer's beta-amyloid precursor protein". Neuroscience Letters. 261 (3): 143–6. doi:10.1016/S0304-3940(98)00995-1. PMID 10081969. S2CID 54307954.
  53. ^ Trommsdorff M, Borg JP, Margolis B, Herz J (Dec 1998). "Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein". The Journal of Biological Chemistry. 273 (50): 33556–60. doi:10.1074/jbc.273.50.33556. PMID 9837937.
  54. ^ Chow N, Korenberg JR, Chen XN, Neve RL (maj 1996). "APP-BP1, a novel protein that binds to the carboxyl-terminal region of the amyloid precursor protein". The Journal of Biological Chemistry. 271 (19): 11339–46. doi:10.1074/jbc.271.19.11339. PMID 8626687.
  55. ^ Zheng P, Eastman J, Vande Pol S, Pimplikar SW (Dec 1998). "PAT1, a microtubule-interacting protein, recognizes the basolateral sorting signal of amyloid precursor protein". Proceedings of the National Academy of Sciences of the United States of America. 95 (25): 14745–50. Bibcode:1998PNAS...9514745Z. doi:10.1073/pnas.95.25.14745. PMC 24520. PMID 9843960.
  56. ^ Wang B, Nguyen M, Breckenridge DG, Stojanovic M, Clemons PA, Kuppig S, Shore GC (Apr 2003). "Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria". The Journal of Biological Chemistry. 278 (16): 14461–8. doi:10.1074/jbc.M209684200. PMID 12529377.
  57. ^ Lefterov IM, Koldamova RP, Lazo JS (Sep 2000). "Human bleomycin hydrolase regulates the secretion of amyloid precursor protein". FASEB Journal. 14 (12): 1837–47. doi:10.1096/fj.99-0938com. PMID 10973933. S2CID 44302063.
  58. ^ Araki Y, Miyagi N, Kato N, Yoshida T, Wada S, Nishimura M, Komano H, Yamamoto T, De Strooper B, Yamamoto K, Suzuki T (Jun 2004). "Coordinated metabolism of Alcadein and amyloid beta-protein precursor regulates FE65-dependent gene transactivation". The Journal of Biological Chemistry. 279 (23): 24343–54. doi:10.1074/jbc.M401925200. PMID 15037614.
  59. ^ Ikezu T, Trapp BD, Song KS, Schlegel A, Lisanti MP, Okamoto T (Apr 1998). "Caveolae, plasma membrane microdomains for alpha-secretase-mediated processing of the amyloid precursor protein". The Journal of Biological Chemistry. 273 (17): 10485–95. doi:10.1074/jbc.273.17.10485. PMID 9553108.
  60. ^ Hashimoto T, Wakabayashi T, Watanabe A, Kowa H, Hosoda R, Nakamura A, Kanazawa I, Arai T, Takio K, Mann DM, Iwatsubo T (Apr 2002). "CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor, CLAC-P/collagen type XXV". The EMBO Journal. 21 (7): 1524–34. doi:10.1093/emboj/21.7.1524. PMC 125364. PMID 11927537.
  61. ^ Ohsawa I, Takamura C, Kohsaka S (Mar 2001). "Fibulin-1 binds the amino-terminal head of beta-amyloid precursor protein and modulates its physiological function". Journal of Neurochemistry. 76 (5): 1411–20. doi:10.1046/j.1471-4159.2001.00144.x. PMID 11238726. S2CID 83321033.
  62. ^ Chauhan VP, Ray I, Chauhan A, Wisniewski HM (maj 1999). "Binding of gelsolin, a secretory protein, to amyloid beta-protein". Biochemical and Biophysical Research Communications. 258 (2): 241–6. doi:10.1006/bbrc.1999.0623. PMID 10329371.
  63. ^ Yan SD, Fu J, Soto C, Chen X, Zhu H, Al-Mohanna F, Collison K, Zhu A, Stern E, Saido T, Tohyama M, Ogawa S, Roher A, Stern D (Oct 1997). "An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease". Nature. 389 (6652): 689–95. Bibcode:1997Natur.389..689D. doi:10.1038/39522. PMID 9338779. S2CID 4343238.
  64. ^ Tarr PE, Roncarati R, Pelicci G, Pelicci PG, D'Adamio L (maj 2002). "Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc". The Journal of Biological Chemistry. 277 (19): 16798–804. doi:10.1074/jbc.M110286200. PMID 11877420.
  65. ^ Hoe HS, Lee KJ, Carney RS, Lee J, Markova A, Lee JY, Howell BW, Hyman BT, Pak DT, Bu G, Rebeck GW (Jun 2009). "Interaction of reelin with amyloid precursor protein promotes neurite outgrowth". The Journal of Neuroscience. 29 (23): 7459–73. doi:10.1523/JNEUROSCI.4872-08.2009. PMC 2759694. PMID 19515914. SažetakAlzheimer Research Forum.

Dopunska literatura

uredi

Vanjski linkovi

uredi