LRRK2

(Preusmjereno sa PARK8)

Leucinom bogata ponavljajuća kinaza 2 (LRRK2), znano i kao dardarin (od baskijske riječi dardara što znači drhtanje) i PARK8 (od ranije identificirane povezanosti s Parkinsonovom bolešću), je kinazni enzim koji je kod ljudi kodiran genom LRRK2.[5] LRRK2 je član kinazne porodice leucinski bogatih enzima. Varijante ovog grna povezuju se sa Parkinsonovo i Crohnovom bolešču.[5][6]

LRRK2
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

2ZEJ, 3D6T

Identifikatori
AliasiLRRK2
Vanjski ID-jeviOMIM: 609007 MGI: 1913975 HomoloGene: 18982 GeneCards: LRRK2
EC broj2.7.11.1
Lokacija gena (čovjek)
Hromosom 12 (čovjek)
Hrom.Hromosom 12 (čovjek)[1]
Hromosom 12 (čovjek)
Genomska lokacija za LRRK2
Genomska lokacija za LRRK2
Bend12q12Početak40,196,744 bp[1]
Kraj40,369,285 bp[1]
Lokacija gena (miš)
Hromosom 15 (miš)
Hrom.Hromosom 15 (miš)[2]
Hromosom 15 (miš)
Genomska lokacija za LRRK2
Genomska lokacija za LRRK2
Bend15|15 E3Početak91,557,378 bp[2]
Kraj91,700,323 bp[2]
Obrazac RNK ekspresije


Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija protein homodimerization activity
signaling receptor complex adaptor activity
clathrin binding
co-receptor binding
aktivnost sa transferazom
GO:0005097, GO:0005099, GO:0005100 GTPase activator activity
protein kinase activity
protein kinase A binding
peroxidase inhibitor activity
SNARE binding
nucleotide binding
vezivanje identičnih proteina
GO:0006184 GTPase activity
syntaxin-1 binding
protein serine/threonine kinase activity
vezivanje tubulina
transmembrane transporter binding
microtubule binding
MAP kinase kinase activity
GTP binding
ATP binding
GTP-dependent protein kinase activity
beta-catenin destruction complex binding
GO:0001948, GO:0016582 vezivanje za proteine
kinase activity
actin binding
magnesium ion binding
Ćelijska komponenta GO:0016023 citoplazmatska vezikula
endozom
Egzosom
Wnt signalosome
soma
trans-Golđijeva mreža
mitochondrial membranes
sinapsa
citoplazma
mitochondrial outer membrane
synaptic vesicle membrane
perikaryon
Endoplazmatski retikulum
ćelijska membrana
microvillus
mitochondrial matrix
dendrite cytoplasm
growth cone
projekcija ćelije
dendrit
Lizozom
neuron projection
Golgi-associated vesicle
mitohondrija
mitochondrial inner membrane
autolysosome
terminal bouton
intracellular anatomical structure
membrana
Lipidni splav
Akson
amphisome
multivesicular body, internal vesicle
Sinapsna vezikula
inclusion body
međućelijske veze
cytoplasmic side of mitochondrial outer membrane
citosol
Golđijev aparat
postsynapse
Vanćelijsko
jedro
intracellular membrane-bounded organelle
caveola neck
endoplasmic reticulum exit site
glutamatergic synapse
presynaptic cytosol
ribonukleoprotein
Biološki proces lysosome organization
GO:0001306 response to oxidative stress
cellular response to dopamine
regulation of autophagy
positive regulation of autophagy
positive regulation of dopamine receptor signaling pathway
regulation of neuroblast proliferation
intracellular distribution of mitochondria
negative regulation of protein processing
negative regulation of protein processing involved in protein targeting to mitochondrion
protein localization to mitochondrion
positive regulation of canonical Wnt signaling pathway
Autofagija
neuromuscular junction development
Fosforilacija
positive regulation of protein binding
regulation of branching morphogenesis of a nerve
mitochondrion localization
positive regulation of protein autoubiquitination
regulation of synaptic vesicle transport
positive regulation of protein phosphorylation
regulation of kidney size
regulation of synaptic vesicle exocytosis
positive regulation of MAP kinase activity
peptidyl-threonine phosphorylation
MAPK cascade
Wnt signalosome assembly
protein phosphorylation
regulation of synaptic transmission, glutamatergic
excitatory postsynaptic potential
negative regulation of hydrogen peroxide-induced cell death
regulation of dopamine receptor signaling pathway
regulation of membrane potential
protein autophosphorylation
regulation of mitochondrial fission
regulation of neuron maturation
reactive oxygen species metabolic process
positive regulation of programmed cell death
regulation of neuron death
regulation of mitochondrial depolarization
cellular response to oxidative stress
negative regulation of late endosome to lysosome transport
GO:0007243 intracellular signal transduction
regulation of lysosomal lumen pH
GO:0034259 negative regulation of GTPase activity
locomotory exploration behavior
Golgi organization
canonical Wnt signaling pathway
neuron projection morphogenesis
positive regulation of protein ubiquitination
regulation of canonical Wnt signaling pathway
exploration behavior
GO:1904579 cellular response to organic cyclic compound
tangential migration from the subventricular zone to the olfactory bulb
regulation of protein kinase A signaling
calcium-mediated signaling
negative regulation of thioredoxin peroxidase activity by peptidyl-threonine phosphorylation
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
positive regulation of proteasomal ubiquitin-dependent protein catabolic process
negative regulation of neuron death
negative regulation of protein targeting to mitochondrion
GO:0035404 peptidyl-serine phosphorylation
determination of adult lifespan
negative regulation of excitatory postsynaptic potential
GO:0033128 negative regulation of protein phosphorylation
neuron death
GTP metabolic process
negative regulation of autophagosome assembly
olfactory bulb development
cellular response to starvation
regulation of dendritic spine morphogenesis
Ćelijska diferencijacija
Endocitoza
negative regulation of protein binding
mitochondrion organization
cellular response to manganese ion
negative regulation of macroautophagy
regulation of locomotion
GO:0032320, GO:0032321, GO:0032855, GO:0043089, GO:0032854 positive regulation of GTPase activity
regulation of retrograde transport, endosome to Golgi
regulation of CAMKK-AMPK signaling cascade
positive regulation of histone deacetylase activity
endoplasmic reticulum organization
Spermatogeneza
Regulacija ekspresije gena
negative regulation of neuron projection development
striatum development
regulation of protein stability
positive regulation of nitric-oxide synthase biosynthetic process
regulation of ER to Golgi vesicle-mediated transport
protein localization to endoplasmic reticulum exit site
neuron projection arborization
regulation of synaptic vesicle endocytosis
positive regulation of synaptic vesicle endocytosis
positive regulation of microglial cell activation
protein import into nucleus
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_198578

NM_025730

RefSeq (bjelančevina)

NP_940980

NP_080006

Lokacija (UCSC)Chr 12: 40.2 – 40.37 MbChr 15: 91.56 – 91.7 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 2.527 aminokiselina, a molekulska težina 286.103 Da.[7]

1020304050
MASGSCQGCEEDEETLKKLIVRLNNVQEGKQIETLVQILEDLLVFTYSER
ASKLFQGKNIHVPLLIVLDSYMRVASVQQVGWSLLCKLIEVCPGTMQSLM
GPQDVGNDWEVLGVHQLILKMLTVHNASVNLSVIGLKTLDLLLTSGKITL
LILDEESDIFMLIFDAMHSFPANDEVQKLGCKALHVLFERVSEEQLTEFV
ENKDYMILLSALTNFKDEEEIVLHVLHCLHSLAIPCNNVEVLMSGNVRCY
NIVVEAMKAFPMSERIQEVSCCLLHRLTLGNFFNILVLNEVHEFVVKAVQ
QYPENAALQISALSCLALLTETIFLNQDLEEKNENQENDDEGEEDKLFWL
EACYKALTWHRKNKHVQEAACWALNNLLMYQNSLHEKIGDEDGHFPAHRE
VMLSMLMHSSSKEVFQASANALSTLLEQNVNFRKILLSKGIHLNVLELMQ
KHIHSPEVAESGCKMLNHLFEGSNTSLDIMAAVVPKILTVMKRHETSLPV
QLEALRAILHFIVPGMPEESREDTEFHHKLNMVKKQCFKNDIHKLVLAAL
NRFIGNPGIQKCGLKVISSIVHFPDALEMLSLEGAMDSVLHTLQMYPDDQ
EIQCLGLSLIGYLITKKNVFIGTGHLLAKILVSSLYRFKDVAEIQTKGFQ
TILAILKLSASFSKLLVHHSFDLVIFHQMSSNIMEQKDQQFLNLCCKCFA
KVAMDDYLKNVMLERACDQNNSIMVECLLLLGADANQAKEGSSLICQVCE
KESSPKLVELLLNSGSREQDVRKALTISIGKGDSQIISLLLRRLALDVAN
NSICLGGFCIGKVEPSWLGPLFPDKTSNLRKQTNIASTLARMVIRYQMKS
AVEEGTASGSDGNFSEDVLSKFDEWTFIPDSSMDSVFAQSDDLDSEGSEG
SFLVKKKSNSISVGEFYRDAVLQRCSPNLQRHSNSLGPIFDHEDLLKRKR
KILSSDDSLRSSKLQSHMRHSDSISSLASEREYITSLDLSANELRDIDAL
SQKCCISVHLEHLEKLELHQNALTSFPQQLCETLKSLTHLDLHSNKFTSF
PSYLLKMSCIANLDVSRNDIGPSVVLDPTVKCPTLKQFNLSYNQLSFVPE
NLTDVVEKLEQLILEGNKISGICSPLRLKELKILNLSKNHISSLSENFLE
ACPKVESFSARMNFLAAMPFLPPSMTILKLSQNKFSCIPEAILNLPHLRS
LDMSSNDIQYLPGPAHWKSLNLRELLFSHNQISILDLSEKAYLWSRVEKL
HLSHNKLKEIPPEIGCLENLTSLDVSYNLELRSFPNEMGKLSKIWDLPLD
ELHLNFDFKHIGCKAKDIIRFLQQRLKKAVPYNRMKLMIVGNTGSGKTTL
LQQLMKTKKSDLGMQSATVGIDVKDWPIQIRDKRKRDLVLNVWDFAGREE
FYSTHPHFMTQRALYLAVYDLSKGQAEVDAMKPWLFNIKARASSSPVILV
GTHLDVSDEKQRKACMSKITKELLNKRGFPAIRDYHFVNATEESDALAKL
RKTIINESLNFKIRDQLVVGQLIPDCYVELEKIILSERKNVPIEFPVIDR
KRLLQLVRENQLQLDENELPHAVHFLNESGVLLHFQDPALQLSDLYFVEP
KWLCKIMAQILTVKVEGCPKHPKGIISRRDVEKFLSKKRKFPKNYMSQYF
KLLEKFQIALPIGEEYLLVPSSLSDHRPVIELPHCENSEIIIRLYEMPYF
PMGFWSRLINRLLEISPYMLSGRERALRPNRMYWRQGIYLNWSPEAYCLV
GSEVLDNHPESFLKITVPSCRKGCILLGQVVDHIDSLMEEWFPGLLEIDI
CGEGETLLKKWALYSFNDGEEHQKILLDDLMKKAEEGDLLVNPDQPRLTI
PISQIAPDLILADLPRNIMLNNDELEFEQAPEFLLGDGSFGSVYRAAYEG
EEVAVKIFNKHTSLRLLRQELVVLCHLHHPSLISLLAAGIRPRMLVMELA
SKGSLDRLLQQDKASLTRTLQHRIALHVADGLRYLHSAMIIYRDLKPHNV
LLFTLYPNAAIIAKIADYGIAQYCCRMGIKTSEGTPGFRAPEVARGNVIY
NQQADVYSFGLLLYDILTTGGRIVEGLKFPNEFDELEIQGKLPDPVKEYG
CAPWPMVEKLIKQCLKENPQERPTSAQVFDILNSAELVCLTRRILLPKNV
IVECMVATHHNSRNASIWLGCGHTDRGQLSFLDLNTEGYTSEEVADSRIL
CLALVHLPVEKESWIVSGTQSGTLLVINTEDGKKRHTLEKMTDSVTCLYC
NSFSKQSKQKNFLLVGTADGKLAIFEDKTVKLKGAAPLKILNIGNVSTPL
MCLSESTNSTERNVMWGGCGTKIFSFSNDFTIQKLIETRTSQLFSYAAFS
DSNIITVVVDTALYIAKQNSPVVEVWDKKTEKLCGLIDCVHFLREVMVKE
NKESKHKMSYSGRVKTLCLQKNTALWIGTGGGHILLLDLSTRRLIRVIYN
FCNSVRVMMTAQLGSLKNVMLVLGYNRKNTEGTQKQKEIQSCLTVWDINL
PHEVQNLEKHIEVRKELAEKMRRTSVE
Simboli

Funkcija

uredi

Gen LRRK2 kodira protein sa ponavljajućom armadilo (ARM) regijom, pnavljajućom ankirinskom (ANK) regijom, domenima leucinski bogatog ponavljanja (LRR), kinaze, RAS, GTPaza i WD40. Protein je prisutan uglavnom u citoplazmi, ali se povezuje i sa vanjskom mitohondrijskom membranom.

LRRK2 stupa u interakciju sa C-terminalnim R2 domenom RING prsta parkin, a parkin u interakciju sa COR domenom LRRK2. Ekspresija se javlja u mutantima apoptotske ćelijske smrti, izazvane mutacijom LRRK2 u ćelijama neuroblastoma i u mišjim korteksnim neuronima.[8]

Ekspresija mutanata LRRK2 upletena u autosomno dominantnu Parkinsonovu bolest uzrokuje skraćivanje i pojednostavljivanje dendritskog stabla in vivo i u kultiviranim neuronima (in vitro).[9] Posredovano je djelimično i izmjenama u makroautofagiji,[10][11][12][13][14] i može se prevenirati protein-kinazom A, putem regulacije autopfagijskog proteina LC3.[15] Mutacije G2019S i R1441C izazivaju postsinapsnu neravnotežu kalcija, što mitofagijom dovodi do viška mitohondrijskog klirensa dendrita.[16] LRRK2 je također supstrat za šaperonski posredovanu autofagiju.[17]

Klinički značaj

uredi

Mutacije u ovom genu su povezane sa Parkinsonovom bolešćutype 8.[18]

Mutacija Gly2019Ser rezultira povećanom aktivnošću kinaze i relativno je čest uzrok porodične Parkinsonove bolesti kod kavkazoida.[19] Može uzrokovati i sporadičnu Parkinsonovu bolest. Mutirana Gly aminokiselina konzervirana je u svim kinaznim domenima svih vrsta.

Mutacija Gly2019Ser jedna je od malog broja mutacija LRRK2 za koje je dokazano da uzrokuju Parkinsonovu bolest. Od njih, Gly2019Ser je najčešći u zapadnom svijetu i čini ~2% svih slučajeva Parkinsonove bolesti u sjevernoameričkih kavkazoida. Ova mutacija je učestalija je u određenim populacijama, a nalazi se u približno 20% svih pacijenata s Aškenazi jevrejskom Parkinsonovom bolešću i u približno 40% svih pacijenata s Parkinsonovom bolešću sjevernoafričkog berberskog porijekla.[20][21]

Neočekivano, studije pridruživanja širom genoma otkrile su povezanost između LRRK2 i Crohnove bolesti, kao i s Parkinsonovom bolešću, što ukazuje na to da dvije bolesti imaju zajedničke puteve.[22][23]

Napravljeni su pokušaji uzgoja kristala LRRK2 na brodu Međunarodne svemirske stanica, jer okruženje niske gravitacije čini protein manje osjetljivim na sedimentaciju i konvekciju, pa se stoga može kristalizirati.[24]

Mutacije u genu LRRK2 glavni su faktor koji doprinosi genetičkoj osnovi i razvoju Parkinsonove bolesti (PD), a pokazalo se da preko 100 mutacija u ovom genu povećava šanse za razvoj PD. Ove mutacije najčešće su u sjevernoafričkim arapskim berberskim, kineskim i japanskim populacijama.[25]

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000188906 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000036273 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M, López de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Martí-Massó JF, Pérez-Tur J, Wood NW, Singleton AB (novembar 2004). "Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease". Neuron. 44 (4): 595–600. doi:10.1016/j.neuron.2004.10.023. PMID 15541308. S2CID 16688488.
  6. ^ Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (novembar 2004). "Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology". Neuron. 44 (4): 601–7. doi:10.1016/j.neuron.2004.11.005. PMID 15541309. S2CID 8642468.
  7. ^ "UniProt, Q5S007". Pristupljeno 11. 8. 2021.
  8. ^ Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, West AB, Dawson VL, Dawson TM, Ross CA (decembar 2005). "Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration". Proceedings of the National Academy of Sciences of the United States of America. 102 (51): 18676–81. Bibcode:2005PNAS..10218676S. doi:10.1073/pnas.0508052102. PMC 1317945. PMID 16352719.
  9. ^ MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (novembar 2006). "The familial Parkinsonism gene LRRK2 regulates neurite process morphology". Neuron. 52 (4): 587–93. doi:10.1016/j.neuron.2006.10.008. PMID 17114044. S2CID 16966163.
  10. ^ Plowey ED, Cherra SJ, Liu YJ, Chu CT (maj 2008). "Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells". Journal of Neurochemistry. 105 (3): 1048–56. doi:10.1111/j.1471-4159.2008.05217.x. PMC 2361385. PMID 18182054.
  11. ^ Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z (maj 2012). "Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain". The Journal of Neuroscience. 32 (22): 7585–93. doi:10.1523/JNEUROSCI.5809-11.2012. PMC 3382107. PMID 22649237.
  12. ^ Gómez-Suaga P, Luzón-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman PG, Churchill GC, Hilfiker S (februar 2012). "Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP". Human Molecular Genetics. 21 (3): 511–25. doi:10.1093/hmg/ddr481. PMC 3259011. PMID 22012985.
  13. ^ Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing DA, Beal MF, Troncoso JC, McCaffery JM, Jenkins NA, Copeland NG, Galter D, Thomas B, Lee MK, Dawson TM, Dawson VL, Moore DJ (april 2011). Cai H (ured.). "Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2". PLOS ONE. 6 (4): e18568. Bibcode:2011PLoSO...618568R. doi:10.1371/journal.pone.0018568. PMC 3071839. PMID 21494637.
  14. ^ Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R (novembar 2009). "LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model". Human Molecular Genetics. 18 (21): 4022–34. doi:10.1093/hmg/ddp346. PMC 2758136. PMID 19640926.
  15. ^ Cherra SJ, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW, Chu CT (august 2010). "Regulation of the autophagy protein LC3 by phosphorylation". The Journal of Cell Biology. 190 (4): 533–9. doi:10.1083/jcb.201002108. PMC 2928022. PMID 20713600.
  16. ^ Cherra SJ, Steer E, Gusdon AM, Kiselyov K, Chu CT (februar 2013). "Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons". The American Journal of Pathology. 182 (2): 474–84. doi:10.1016/j.ajpath.2012.10.027. PMC 3562730. PMID 23231918.
  17. ^ Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (april 2013). "Interplay of LRRK2 with chaperone-mediated autophagy". Nature Neuroscience. 16 (4): 394–406. doi:10.1038/nn.3350. PMC 3609872. PMID 23455607.
  18. ^ "Entrez Gene: LRRK2 leucine-rich repeat kinase 2".
  19. ^ Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, Shaw K, Bhatia KP, Bonifati V, Quinn NP, Lynch J, Healy DG, Holton JL, Revesz T, Wood NW (februar 2005). "A common LRRK2 mutation in idiopathic Parkinson's disease". Lancet. 365 (9457): 415–6. doi:10.1016/S0140-6736(05)17830-1. PMID 15680457. S2CID 36186136.
  20. ^ Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, Bressman S, et al. (juli 2008). "Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study". The Lancet. Neurology. 7 (7): 583–90. doi:10.1016/S1474-4422(08)70117-0. PMC 2832754. PMID 18539534.
  21. ^ Lesage S, Dürr A, Tazir M, Lohmann E, Leutenegger AL, Janin S, et al. (januar 2006). "LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs". The New England Journal of Medicine. 354 (4): 422–3. doi:10.1056/NEJMc055540. PMID 16436781.
  22. ^ Manolio TA (juli 2010). "Genomewide association studies and assessment of the risk of disease". The New England Journal of Medicine. 363 (2): 166–76. doi:10.1056/NEJMra0905980. PMID 20647212.
  23. ^ Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simón-Sánchez J, Schulte C, Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW (februar 2011). "Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies". Lancet. 377 (9766): 641–9. doi:10.1016/S0140-6736(10)62345-8. PMC 3696507. PMID 21292315.
  24. ^ Carreau, Mark (14. 11. 2018). "ISS Cargo Missions To Test Soyuz, Deliver New Science". Aviation Week. A collaboration between the Michael J. Fox Foundation, of New York City, and Merck Research Laboratories, of Kenilworth, New Jersey, will seek to grow crystals of a key gene protein, Leucine-Rich Repeat Kinase 2 (LRRK2), in an effort to advance the search for a cure for Parkinson’s disease. Crystals cultured in the absence of gravity are less susceptible to sedimentation and convection, rendering them larger and easier to map than those grown in labs on Earth in order to design medicines.
  25. ^ “Young-Onset Parkinson's.” Parkinson's Foundation, 2 Oct. 2018, www.parkinson.org/Understanding-Parkinsons/What-is-Parkinsons/Young-Onset-Parkinsons.

Dopunska literatura

uredi

Vanjski linkovi

uredi