MAPK1

(Preusmjereno sa P42MAPK)

Mitogen–aktivirana protein-kinaza 1, znana i kao MAPK1, p42MAPK i ERK2, jest enzim koji je kod ljudi kodiran genom sa MAPK1 hromosoma 22.[5]

MAPK1
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

1PME, 1TVO, 1WZY, 2OJG, 2OJI, 2OJJ, 2Y9Q, 3D42, 3D44, 3I5Z, 3I60, 3SA0, 3TEI, 3W55, 4FMQ, 4FUX, 4FUY, 4FV0, 4FV1, 4FV2, 4FV3, 4FV4, 4FV5, 4FV6, 4FV7, 4FV8, 4FV9, 4G6N, 4G6O, 4H3P, 4H3Q, 4IZ5, 4IZ7, 4IZA, 4N0S, 4NIF, 4O6E, 4QTA, 4QTE, 4ZZM, 4ZZN, 4ZZO, 5BUE, 5BUI, 5BUJ, 4QP1, 4QP2, 4QP3, 4QP4, 4QP6, 4QP7, 4QP8, 4QP9, 4QPA, 4XJ0, 5BVD, 5BVE, 5BVF, 5AX3, 4ZXT, 5K4I

Identifikatori
AliasiMAPK1
Vanjski ID-jeviOMIM: 176948 MGI: 1346858 HomoloGene: 37670 GeneCards: MAPK1
Lokacija gena (čovjek)
Hromosom 22 (čovjek)
Hrom.Hromosom 22 (čovjek)[1]
Hromosom 22 (čovjek)
Genomska lokacija za MAPK1
Genomska lokacija za MAPK1
Bend22q11.22Početak21,759,657 bp[1]
Kraj21,867,680 bp[1]
Lokacija gena (miš)
Hromosom 16 (miš)
Hrom.Hromosom 16 (miš)[2]
Hromosom 16 (miš)
Genomska lokacija za MAPK1
Genomska lokacija za MAPK1
Bend16 A3|16 10.53 cMPočetak16,801,246 bp[2]
Kraj16,865,317 bp[2]
Obrazac RNK ekspresije


Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija phosphatase binding
ATP binding
protein kinase activity
transcription factor binding
aktivnost sa transferazom
mitogen-activated protein kinase kinase kinase binding
phosphotyrosine residue binding
GO:0001948, GO:0016582 vezivanje za proteine
protein kinase binding
vezivanje sa DNK
nucleotide binding
RNA polymerase II CTD heptapeptide repeat kinase activity
protein serine/threonine kinase activity
kinase activity
vezivanje identičnih proteina
MAP kinase activity
double-stranded DNA binding
MAP kinase kinase activity
Ćelijska komponenta citoplazma
citosol
focal adhesion
centar organizacije mikrotubula
mitohondrija
Kaveole
dendrite cytoplasm
citoskelet
jedro
Egzosom
perikaryon
late endosome
Golđijev aparat
Diobeno vreteno
Akson
early endosome
mitotic spindle
Pseudopodija
extracellular region
nukleoplazma
azurophil granule lumen
ficolin-1-rich granule lumen
ćelijska membrana
GO:0097483, GO:0097481 postsynaptic density
membrana
GO:0009327 makromolekulani kompleks
Biološki proces caveolin-mediated endocytosis
positive regulation of telomere capping
response to exogenous dsRNA
cardiac neural crest cell development involved in heart development
positive regulation of translation
cellular response to DNA damage stimulus
platelet activation
Fc-epsilon receptor signaling pathway
protein phosphorylation
face development
cellular response to granulocyte macrophage colony-stimulating factor stimulus
regulation of DNA-binding transcription factor activity
animal organ morphogenesis
ćelijski ciklus
ERBB signaling pathway
GO:0097285 apoptoza
B cell receptor signaling pathway
GO:0009373 regulation of transcription, DNA-templated
regulation of protein stability
Fc-gamma receptor signaling pathway involved in phagocytosis
thymus development
negative regulation of cell differentiation
ERK1 and ERK2 cascade
labyrinthine layer blood vessel development
transcription, DNA-templated
GO:0060469, GO:0009371 positive regulation of transcription, DNA-templated
heart development
GO:0022415 viral process
response to toxic substance
regulation of stress-activated MAPK cascade
chemical synaptic transmission
growth hormone receptor signaling pathway via JAK-STAT
cytosine metabolic process
Fosforilacija
outer ear morphogenesis
response to estrogen
Hemotaksija
response to lipopolysaccharide
thyroid gland development
response to epidermal growth factor
positive regulation of telomerase activity
Nocicepcija
peptidyl-threonine phosphorylation
trachea formation
lipopolysaccharide-mediated signaling pathway
mammary gland epithelial cell proliferation
GO:0007243 intracellular signal transduction
lung morphogenesis
neural crest cell development
positive regulation of cell migration
regulation of early endosome to late endosome transport
response to stress
positive regulation of telomere maintenance via telomerase
MAPK cascade
axon guidance
fibroblast growth factor receptor signaling pathway
positive regulation of peptidyl-threonine phosphorylation
GO:0035404 peptidyl-serine phosphorylation
positive regulation of cell population proliferation
regulation of cellular response to heat
Bergmann glial cell differentiation
regulation of Golgi inheritance
T cell receptor signaling pathway
regulation of cytoskeleton organization
GO:0072468 Transdukcija signala
long-term potentiation
regulation of ossification
regulation of phosphatidylinositol 3-kinase signaling
neutrophil degranulation
Regulacija ekspresije gena
cellular response to organic substance
GO:0010260 starenje
learning or memory
GO:1901313 positive regulation of gene expression
diadenosine tetraphosphate biosynthetic process
regulation of cellular pH
cellular response to amino acid starvation
GO:0072353 cellular response to reactive oxygen species
response to nicotine
decidualization
stress-activated MAPK cascade
positive regulation of cardiac muscle cell proliferation
cellular response to cadmium ion
cellular response to tumor necrosis factor
cellular response to dopamine
positive regulation of protein import into nucleus
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_138957
NM_002745

NM_001038663
NM_011949
NM_001357115
NM_028991

RefSeq (bjelančevina)

NP_002736
NP_620407

NP_001033752
NP_036079
NP_001344044

Lokacija (UCSC)Chr 22: 21.76 – 21.87 MbChr 16: 16.8 – 16.87 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 360 aminokiselina, a molekulska težina 41.390 Da.

1020304050
MAAAAAAGAGPEMVRGQVFDVGPRYTNLSYIGEGAYGMVCSAYDNVNKVR
VAIKKISPFEHQTYCQRTLREIKILLRFRHENIIGINDIIRAPTIEQMKD
VYIVQDLMETDLYKLLKTQHLSNDHICYFLYQILRGLKYIHSANVLHRDL
KPSNLLLNTTCDLKICDFGLARVADPDHDHTGFLTEYVATRWYRAPEIML
NSKGYTKSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQE
DLNCIINLKARNYLLSLPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHK
RIEVEQALAHPYLEQYYDPSDEPIAEAPFKFDMELDDLPKEKLKELIFEE
TARFQPGYRS

Funkcija

uredi

Protein kodiran ovim genom član je porodice MAP-kinaza. MAP-kinaze, također poznate kao vanćelijske signalno regulirane kinaze (ERK), djeluju kao integracijska tačka za više biohemijskih signala i uključene su u širok spektar ćelijskih procesa, kao što je proliferacija, diferencijacija, regulacija i razvoj transkripcije. Aktivacija ove kinaze zahtijeva njenu fosforilaciju uzvodnim kinazama. Nakon aktivacije, ova kinaza translocira se u jedro stimuliranih ćelija, gdje fosforilira jedarne mete. Za ovaj gen prijavljene su dvije alternativno prerađene varijante transkripta koje kodiraju isti protein, ali se razlikuju u UTR-u.[6] MAPK1 contains multiple amino acid sites that are phosphorylated and ubiquitinated.[7]

Modelni organizmi

uredi

U proučavanju funkcije MAPK1 korišteni su modelni organizmi. Uslovna linija nokaut-miša, zvana Mapk1tm1a(EUCOMM)Wtsi[8][9] generirana je kao dio programa Konzorcija za nokaut-miševe—projekta mutageneze visoke propusnosti za generiranje i distribuciju životinjskih modela bolesti zainteresiranim naučnicima.[10][11][12]

Fenotip Mapk1 nokaut-miševa
Svojstvo Fenotip
Vijabilnost homozigota Nenormalan
Studija recesivne letalnosti Nenormalan
Plodnost Normalan
Tjelesna težina Normalan
Anksioznost otvorenog polja| Normalan
Neurološka procjena Normalan
Snaga ugriza Normalan
Test vruće ploče Normalan
Dismorfologija Normalan [13]
Indirektna kalorimetrija Normalan
Test tolerancije glukoze Normalan
Slušni odgovor moždanog stabla Normalan
DEXA Normalan
Radiografija Normalan
Tjelesna temperatura Normalan
Morfologija OKA Normalan
klinička hemija Nenormalan[14]
Plazmatski imunoglobulini Normalan
Hematologija Normalan
Leukociti periferne krvi Normalan
Mikronukleus test Normalan
Težina srca Normalan
Cjelovitost repne epiderme Normalan
Histopatologija kože Normalan
Histopatologija mozga Normalan
Salmonella infekcija Normalan[15]
Citrobacter infekcija Normalan[16]
Svi testovi i analize su prema[17][18]

Mužjaci i ženke su podvrgnute standardiziranom fenotipskom pregledu, kako bi se utvrdili efekti deleciija.[17][19] Obavljeno je 27 testova na mutantnim miševima i uočene su tri značajne abnormalnosti.[17] Nijedan homozigotni mutantni embrion nije identifikovan tokom gestacije, pa stoga nijedan nije preživio do odbijanja. Preostali testovi su obavljeni na heterozigotnim mutantnim odraslim miševima, a mužjaci su imali smanjene razine amilaze u cirkulaciji.[17]

Uslovna delecija "Mapk1" u B-ćelijama pokazala je ulogu MAPK1 u proizvodnji antitijela zavisnih od T-ćelija.[20] Dominantni mutanti za dobijanje funkcije "Mapk1" kod transgenih miševa pokazao je ulogu MAPK1 u razvoju T-ćelija.[21] Uslovna inaktivacija "Mapk1" u nervnim progenitorskim ćelijama korteksa u razvoju dovodi do smanjenja debljine korteksa i smanjene proliferacije u nervnim progenitorskim ćelijama.[22]

Interakcije

uredi

Pokazalo se da MAPK1 reaguje sa:

Klinički značaj

uredi

Mutacije u MAPK1 su uključene u mnoge tipove kancera.[61]

Također pogledajte

uredi

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000100030 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000063358 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD (February 1992). "Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs". Biochem. Biophys. Res. Commun. 182 (3): 1416–22. doi:10.1016/0006-291X(92)91891-S. PMID 1540184.
  6. ^ "Entrez Gene: MAPK1 mitogen-activated protein kinase 1".
  7. ^ "ERK2 (human)". www.phosphosite.org. Pristupljeno 2020-10-31.
  8. ^ "International Knockout Mouse Consortium".
  9. ^ "Mouse Genome Informatics".
  10. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  11. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  12. ^ Collins FS, Rossant J, Wurst W (2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  13. ^ "Dysmorphology data for Mapk1". Wellcome Trust Sanger Institute.
  14. ^ "Clinical chemistry data for Mapk1". Wellcome Trust Sanger Institute.
  15. ^ "Salmonella infection data for Mapk1". Wellcome Trust Sanger Institute.
  16. ^ "Citrobacter infection data for Mapk1". Wellcome Trust Sanger Institute.
  17. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  18. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  19. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  20. ^ Sanjo H, Hikida M, Aiba Y, Mori Y, Hatano N, Ogata M, Kurosaki T (February 2007). "Extracellular signal-regulated protein kinase 2 is required for efficient generation of B cells bearing antigen-specific immunoglobulin G". Molecular and Cellular Biology. 27 (4): 1236–46. doi:10.1128/MCB.01530-06. PMC 1800707. PMID 17145771.
  21. ^ Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM (November 1997). "The influence of the MAPK pathway on T cell lineage commitment". Immunity. 7 (5): 609–18. doi:10.1016/s1074-7613(00)80382-9. PMID 9390685.
  22. ^ Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, et al. (July 2008). "Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function". The Journal of Neuroscience. 28 (27): 6983–95. doi:10.1523/JNEUROSCI.0679-08.2008. PMC 4364995. PMID 18596172.
  23. ^ Díaz-Rodríguez E, Montero JC, Esparís-Ogando A, Yuste L, Pandiella A (June 2002). "Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding". Mol. Biol. Cell. 13 (6): 2031–44. doi:10.1091/mbc.01-11-0561. PMC 117622. PMID 12058067.
  24. ^ Voong LN, Slater AR, Kratovac S, Cressman DE (April 2008). "Mitogen-activated protein kinase ERK1/2 regulates the class II transactivator". J. Biol. Chem. 283 (14): 9031–9. doi:10.1074/jbc.M706487200. PMC 2431044. PMID 18245089.
  25. ^ Slack DN, Seternes OM, Gabrielsen M, Keyse SM (May 2001). "Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1". J. Biol. Chem. 276 (19): 16491–500. doi:10.1074/jbc.M010966200. PMID 11278799.
  26. ^ Calvisi DF, Pinna F, Meloni F, Ladu S, Pellegrino R, Sini M, Daino L, Simile MM, De Miglio MR, Virdis P, Frau M, Tomasi ML, Seddaiu MA, Muroni MR, Feo F, Pascale RM (June 2008). "Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma". Cancer Res. 68 (11): 4192–200. doi:10.1158/0008-5472.CAN-07-6157. PMID 18519678.
  27. ^ Aoyama K, Nagata M, Oshima K, Matsuda T, Aoki N (July 2001). "Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain". J. Biol. Chem. 276 (29): 27575–83. doi:10.1074/jbc.M100408200. PMID 11346645.
  28. ^ Todd JL, Tanner KG, Denu JM (May 1999). "Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway". J. Biol. Chem. 274 (19): 13271–80. doi:10.1074/jbc.274.19.13271. PMID 10224087.
  29. ^ a b c Eblen ST, Kumar NV, Shah K, Henderson MJ, Watts CK, Shokat KM, Weber MJ (April 2003). "Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs". J. Biol. Chem. 278 (17): 14926–35. doi:10.1074/jbc.M300485200. PMID 12594221.
  30. ^ Cano E, Hazzalin CA, Kardalinou E, Buckle RS, Mahadevan LC (November 1995). "Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction". J. Cell Sci. 108 (11): 3599–609. doi:10.1242/jcs.108.11.3599. PMID 8586671.
  31. ^ Purcell NH, Darwis D, Bueno OF, Müller JM, Schüle R, Molkentin JD (February 2004). "Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes". Mol. Cell. Biol. 24 (3): 1081–95. doi:10.1128/mcb.24.3.1081-1095.2004. PMC 321437. PMID 14729955.
  32. ^ Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA (December 2000). "Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras". Proc. Natl. Acad. Sci. U.S.A. 97 (26): 14329–33. Bibcode:2000PNAS...9714329Z. doi:10.1073/pnas.250494697. PMC 18918. PMID 11114188.
  33. ^ a b Sanz-Moreno V, Casar B, Crespo P (May 2003). "p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels". Mol. Cell. Biol. 23 (9): 3079–90. doi:10.1128/mcb.23.9.3079-3090.2003. PMC 153192. PMID 12697810.
  34. ^ Robinson FL, Whitehurst AW, Raman M, Cobb MH (April 2002). "Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1". J. Biol. Chem. 277 (17): 14844–52. doi:10.1074/jbc.M107776200. PMID 11823456.
  35. ^ a b Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W (May 2000). "Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein". Mol. Cell. Biol. 20 (9): 3079–85. doi:10.1128/mcb.20.9.3079-3085.2000. PMC 85596. PMID 10757792.
  36. ^ Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG, Lottspeich F, Huber LA (February 2001). "A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment". J. Cell Biol. 152 (4): 765–76. doi:10.1083/jcb.152.4.765. PMC 2195784. PMID 11266467.
  37. ^ Stippec S, Robinson FL, Cobb MH (July 2001). "Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking". J. Biol. Chem. 276 (28): 26509–15. doi:10.1074/jbc.M102769200. PMID 11352917.
  38. ^ Chen Z, Cobb MH (May 2001). "Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2". J. Biol. Chem. 276 (19): 16070–5. doi:10.1074/jbc.M100681200. PMID 11279118.
  39. ^ Karandikar M, Xu S, Cobb MH (December 2000). "MEKK1 binds raf-1 and the ERK2 cascade components". J. Biol. Chem. 275 (51): 40120–7. doi:10.1074/jbc.M005926200. PMID 10969079.
  40. ^ Tanoue T, Maeda R, Adachi M, Nishida E (February 2001). "Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions". EMBO J. 20 (3): 466–79. doi:10.1093/emboj/20.3.466. PMC 133461. PMID 11157753.
  41. ^ a b Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (April 1997). "Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2". EMBO J. 16 (8): 1909–20. doi:10.1093/emboj/16.8.1909. PMC 1169794. PMID 9155017.
  42. ^ Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG, Proud CG (August 2003). "The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization". Mol. Cell. Biol. 23 (16): 5692–705. doi:10.1128/mcb.23.16.5692-5705.2003. PMC 166352. PMID 12897141.
  43. ^ Jin Z, Gao F, Flagg T, Deng X (September 2004). "Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation". J. Biol. Chem. 279 (38): 40209–19. doi:10.1074/jbc.M404056200. PMID 15210690.
  44. ^ Gupta S, Davis RJ (October 1994). "MAP kinase binds to the NH2-terminal activation domain of c-Myc". FEBS Lett. 353 (3): 281–5. doi:10.1016/0014-5793(94)01052-8. PMID 7957875. S2CID 45404088.
  45. ^ Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ (July 1997). "Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase". Proc. Natl. Acad. Sci. U.S.A. 94 (14): 7337–42. Bibcode:1997PNAS...94.7337T. doi:10.1073/pnas.94.14.7337. PMC 23822. PMID 9207092.
  46. ^ Lou Y, Xie W, Zhang DF, Yao JH, Luo ZF, Wang YZ, Shi YY, Yao XB (August 2004). "Nek2A specifies the centrosomal localization of Erk2". Biochem. Biophys. Res. Commun. 321 (2): 495–501. doi:10.1016/j.bbrc.2004.06.171. PMID 15358203.
  47. ^ Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC, Canton B, Nguyen XT, Barnier JV, Camonis J, Ginsberg MH, Chneiweiss H (August 2001). "PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase". Dev. Cell. 1 (2): 239–50. doi:10.1016/s1534-5807(01)00035-1. PMID 11702783.
  48. ^ Pettiford SM, Herbst R (February 2000). "The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP". Oncogene. 19 (7): 858–69. doi:10.1038/sj.onc.1203408. PMID 10702794.
  49. ^ Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T (April 1999). "Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)". J. Biol. Chem. 274 (17): 11693–700. doi:10.1074/jbc.274.17.11693. PMID 10206983.
  50. ^ a b Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW (January 1999). "Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo". J. Biol. Chem. 274 (5): 2893–8. doi:10.1074/jbc.274.5.2893. PMID 9915826.
  51. ^ a b Roux PP, Richards SA, Blenis J (July 2003). "Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity". Mol. Cell. Biol. 23 (14): 4796–804. doi:10.1128/mcb.23.14.4796-4804.2003. PMC 162206. PMID 12832467.
  52. ^ a b Zhao Y, Bjorbaek C, Moller DE (November 1996). "Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases". J. Biol. Chem. 271 (47): 29773–9. doi:10.1074/jbc.271.47.29773. PMID 8939914.
  53. ^ Mitsushima M, Suwa A, Amachi T, Ueda K, Kioka N (August 2004). "Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin". J. Biol. Chem. 279 (33): 34570–7. doi:10.1074/jbc.M402304200. PMID 15184391.
  54. ^ Pircher TJ, Petersen H, Gustafsson JA, Haldosén LA (April 1999). "Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a". Mol. Endocrinol. 13 (4): 555–65. doi:10.1210/mend.13.4.0263. PMID 10194762.
  55. ^ Dinerstein-Cali H, Ferrag F, Kayser C, Kelly PA, Postel-Vinay M (August 2000). "Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins". Mol. Cell. Endocrinol. 166 (2): 89–99. doi:10.1016/s0303-7207(00)00277-x. PMID 10996427. S2CID 45725648.
  56. ^ Zhang S, Fukushi M, Hashimoto S, Gao C, Huang L, Fukuyo Y, Nakajima T, Amagasa T, Enomoto S, Koike K, Miura O, Yamamoto N, Tsuchida N (September 2002). "A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling". Biochem. Biophys. Res. Commun. 297 (1): 17–23. doi:10.1016/s0006-291x(02)02086-7. PMID 12220502.
  57. ^ Maekawa M, Nishida E, Tanoue T (October 2002). "Identification of the Anti-proliferative protein Tob as a MAPK substrate". J. Biol. Chem. 277 (40): 37783–7. doi:10.1074/jbc.M204506200. PMID 12151396.
  58. ^ Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (April 2005). "Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis". Cell. 121 (2): 179–93. doi:10.1016/j.cell.2005.02.031. PMID 15851026. S2CID 18663447.
  59. ^ Song JS, Gomez J, Stancato LF, Rivera J (October 1996). "Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex". J. Biol. Chem. 271 (43): 26962–70. doi:10.1074/jbc.271.43.26962. PMID 8900182.
  60. ^ Lee IS, Liu Y, Narazaki M, Hibi M, Kishimoto T, Taga T (January 1997). "Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6". FEBS Lett. 401 (2–3): 133–7. doi:10.1016/s0014-5793(96)01456-1. PMID 9013873. S2CID 32632406.
  61. ^ "Expression of MAPK1 in cancer - Summary - The Human Protein Atlas". www.proteinatlas.org.

Dopunska literatura

uredi

Vanjski linkovi

uredi