Protein Bloomovog sindroma

Protein Bloomovog sindroma je protein koji je kod ljudi kodiran genom BLM sa hromosoma 15, koji nije eksprimiran u Bloomovom sindromu.[5]

BLM
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

2KV2, 2MH9, 2RRD, 3WE2, 3WE3, 4CDG, 4CGZ, 4O3M

Identifikatori
AliasiBLM
Vanjski ID-jeviOMIM: 604610 MGI: 1328362 HomoloGene: 47902 GeneCards: BLM
Lokacija gena (čovjek)
Hromosom 15 (čovjek)
Hrom.Hromosom 15 (čovjek)[1]
Hromosom 15 (čovjek)
Genomska lokacija za BLM
Genomska lokacija za BLM
Bend15q26.1Početak90,717,346 bp[1]
Kraj90,816,166 bp[1]
Lokacija gena (miš)
Hromosom 7 (miš)
Hrom.Hromosom 7 (miš)[2]
Hromosom 7 (miš)
Genomska lokacija za BLM
Genomska lokacija za BLM
Bend7 D2|7 45.65 cMPočetak80,104,481 bp[2]
Kraj80,184,867 bp[2]
Ontologija gena
Molekularna funkcija ATP-dependent DNA/DNA annealing activity
nucleotide binding
GO:0008026 helicase activity
GO:0004003 DNA helicase activity
bubble DNA binding
p53 binding
G-quadruplex DNA binding
single-stranded DNA binding
GO:0102490, GO:0102491, GO:0102489, GO:0102488, GO:0102487, GO:0102486, GO:0102485 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides
ATPase activity
GO:0001948, GO:0016582 vezivanje za proteine
catalytic activity
nucleic acid binding
GO:1990163 four-way junction helicase activity
hydrolase activity
ATP binding
GO:0043140 3'-5' DNA helicase activity
four-way junction DNA binding
Y-form DNA binding
forked DNA-dependent helicase activity
telomeric D-loop binding
telomeric G-quadruplex DNA binding
8-hydroxy-2'-deoxyguanosine DNA binding
vezivanje sa DNK
ATP-dependent activity, acting on DNA
vezivanje iona cinka
protein homodimerization activity
vezivanje iona metala
Ćelijska komponenta PML body
nuclear matrix
intracellular anatomical structure
nukleoplazma
lateralni element
Telomera
nuclear chromosome
Jedarce
jedro
citoplazma
citosol
replication fork
hromosom
pronucleus
Biološki proces DNA recombination
regulation of cyclin-dependent protein serine/threonine kinase activity
replication fork protection
DNA double-strand break processing
GO:0060469, GO:0009371 positive regulation of transcription, DNA-templated
negative regulation of cell division
cellular response to camptothecin
cell metabolism
protein complex oligomerization
replication fork processing
negative regulation of DNA recombination
cellular response to ionizing radiation
mitotic G2 DNA damage checkpoint signaling
response to X-ray
cellular response to hydroxyurea
GO:0100026 Popravka DNK
double-strand break repair via homologous recombination
telomeric D-loop disassembly
Replikacija DNK
t-circle formation
DNA duplex unwinding
G-quadruplex DNA unwinding
protein homooligomerization
regulation of DNA-dependent DNA replication
cellular response to DNA damage stimulus
resolution of meiotic recombination intermediates
DNA synthesis involved in DNA repair
strand displacement
double-strand break repair via nonhomologous end joining
meiotic DNA double-strand break processing involved in reciprocal meiotic recombination
negative regulation of apoptotic process
double-strand break repair via synthesis-dependent strand annealing
negative regulation of mitotic recombination
alpha-beta T cell differentiation
positive regulation of alpha-beta T cell proliferation
meiotic chromosome separation
negative regulation of thymocyte apoptotic process
resolution of recombination intermediates
negative regulation of double-strand break repair via single-strand annealing
positive regulation of double-strand break repair via homologous recombination
regulation of signal transduction by p53 class mediator
telomere maintenance
DNA unwinding involved in DNA replication
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_000057
NM_001287246
NM_001287247
NM_001287248

NM_001042527
NM_007550

RefSeq (bjelančevina)

NP_000048
NP_001274175
NP_001274176
NP_001274177
NP_001274177.1

NP_001035992
NP_031576

Lokacija (UCSC)Chr 15: 90.72 – 90.82 MbChr 7: 80.1 – 80.18 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Genski proizvod Bloomovog sindroma povezan je sa RecQ podskupom DNK helikaze koji sadrži DExH kutiju i ima aktivnosti DNK stimulirane ATPaze i ATP-ovisne DNK helikaze. Mutacije koje uzrokuju Bloomov sindrom deletiraju ili mijenjaju motive helikaze i mogu onemogućiti aktivnost 3' → 5' helikaze. Normalni protein može djelovati na suzbijanje neodgovarajuće homologne rekombinacije.[6]

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 1.417 aminokiselina, a molekulska težina 159.000 Da.[5]

1020304050
MAAVPQNNLQEQLERHSARTLNNKLSLSKPKFSGFTFKKKTSSDNNVSVT
NVSVAKTPVLRNKDVNVTEDFSFSEPLPNTTNQQRVKDFFKNAPAGQETQ
RGGSKSLLPDFLQTPKEVVCTTQNTPTVKKSRDTALKKLEFSSSPDSLST
INDWDDMDDFDTSETSKSFVTPPQSHFVRVSTAQKSKKGKRNFFKAQLYT
TNTVKTDLPPPSSESEQIDLTEEQKDDSEWLSSDVICIDDGPIAEVHINE
DAQESDSLKTHLEDERDNSEKKKNLEEAELHSTEKVPCIEFDDDDYDTDF
VPPSPEEIISASSSSSKCLSTLKDLDTSDRKEDVLSTSKDLLSKPEKMSM
QELNPETSTDCDARQISLQQQLIHVMEHICKLIDTIPDDKLKLLDCGNEL
LQQRNIRRKLLTEVDFNKSDASLLGSLWRYRPDSLDGPMEGDSCPTGNSM
KELNFSHLPSNSVSPGDCLLTTTLGKTGFSATRKNLFERPLFNTHLQKSF
VSSNWAETPRLGKKNESSYFPGNVLTSTAVKDQNKHTASINDLERETQPS
YDIDNFDIDDFDDDDDWEDIMHNLAASKSSTAAYQPIKEGRPIKSVSERL
SSAKTDCLPVSSTAQNINFSESIQNYTDKSAQNLASRNLKHERFQSLSFP
HTKEMMKIFHKKFGLHNFRTNQLEAINAALLGEDCFILMPTGGGKSLCYQ
LPACVSPGVTVVISPLRSLIVDQVQKLTSLDIPATYLTGDKTDSEATNIY
LQLSKKDPIIKLLYVTPEKICASNRLISTLENLYERKLLARFVIDEAHCV
SQWGHDFRQDYKRMNMLRQKFPSVPVMALTATANPRVQKDILTQLKILRP
QVFSMSFNRHNLKYYVLPKKPKKVAFDCLEWIRKHHPYDSGIIYCLSRRE
CDTMADTLQRDGLAALAYHAGLSDSARDEVQQKWINQDGCQVICATIAFG
MGIDKPDVRFVIHASLPKSVEGYYQESGRAGRDGEISHCLLFYTYHDVTR
LKRLIMMEKDGNHHTRETHFNNLYSMVHYCENITECRRIQLLAYFGENGF
NPDFCKKHPDVSCDNCCKTKDYKTRDVTDDVKSIVRFVQEHSSSQGMRNI
KHVGPSGRFTMNMLVDIFLGSKSAKIQSGIFGKGSAYSRHNAERLFKKLI
LDKILDEDLYINANDQAIAYVMLGNKAQTVLNGNLKVDFMETENSSSVKK
QKALVAKVSQREEMVKKCLGELTEVCKSLGKVFGVHYFNIFNTVTLKKLA
ESLSSDPEVLLQIDGVTEDKLEKYGAEVISVLQKYSEWTSPAEDSSPGIS
LSSSRGPGRSAAEELDEEIPVSSHYFASKTRNERKRKKMPASQRSKRRKT
ASSGSKAKGGSATCRKISSKTKSSSIIGSSSASHTSQATSGANSKLGIMA
PPKPINRPFLKPSYAFS
 
Model mejotske rekombinacije, iniciran prekidom ili prazninom dvostrukog lanca, nakon čega slijedi uparivanje s homolognim hromosomom i invazija lanca kako bi se pokrenuo proces rekombinacijske popravke. Popravka jaza može dovesti do krosing-overa (CO) ili nekrosinga (NCO) bočnih regija. Smatra se da se rekombinacija CO javlja pomoću modela dvostrukpg Hollidayevog spoja (DHJ), ilustrovanog na desnoj strani, iznad. Smatra se da se NCO rekombinanti javljaju prvenstveno po modelu udvajanja ovisnog o lancima od sinteze (SDSA), koji je ilustrovan lijevo, gore. Čini se da je većina događaja rekombinacije tipa SDSA.

Rekombinacija tokom mejoze je često inicirana prekidom dvostrukog lanca DNK (DSB). Tokom rekombinacije, dijelovi DNK na 5' krajevima prekida se odsijecaju u procesu koji se zove resekcija. U koraku invazije lanca koji slijedi, nadvišena 3' kraj slomljenog molekula DNK tada "napada" DNK homolognog hromosoma koji nije slomljen. Nakon invazije lanca, daljnji slijed događaja može pratiti bilo koji od dva glavna puta koji vode do krosingovera (CO) ili bez njega (NCO) rekombinanta (pogledajte Genetička rekombinacija i donji dio slike u ovom odjeljku).

Pupajući kvasac Saccharomyces cerevisiae kodira ortolog proteina Bloomovog sindroma (BLM) koji je označen kao Sgs1 (mali supresor rasta 1). Sgs1(BLM) je helikaza koja funkcionira popravkama homolognom rekombinacijom DSB-a. Čini se da je helikaza Sgs1(BLM) centralni regulator većine rekombinacijskih događaja koji se dešavaju tokom mejoza uS. cerevisiae.[7] Tokom normalne mejoze Sgs1(BLM) je odgovoran za usmjeravanje rekombinacije ka alternativnom formiranju ili ranih NCO-a ili Hollidayevih spona zglobnih molekula, pri čemu se potonji kasnije rješavaju kao COs.[7]

U biljci Arabidopsis thaliana, homolozi Sgs1(BLM) helikaze djeluju kao glavne barijere za mejotsko stvaranje CO.[8] Smatra se da ove helikaze istiskuju invazivni lanac, omogućavajući njegovo udvostručavanje s drugim 3'-prepustnim krajem DSB-a, što dovodi do formiranja NCO rekombinantnog procesa postupkom koji se naziva udvostručavanje lanca ovisno o sintezi (SDSA) (vidi Genetička rekombinacija i sliku na ovaj odeljak). Procjenjuje se da je samo oko 4% DSB-a popravljeno rekombinacijom CO,[9] Sequela-Arnaud et al.[8] sugerirajići da su brojevi CO ograničeni zbog dugoročnih troškova rekombinacije CO, odnosno razbijanja povoljnih genetičkih kombinacija alela stvorenih prošlim prirodnim odabiranjem.

Interakcije

uredi

Pokazalo se da protein Bloomovog sindroma reaguje sa:

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000197299 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000030528 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b Karow JK, Chakraverty RK, Hickson ID (januar 1998). "The Bloom's syndrome gene product is a 3'-5' DNA helicase". J Biol Chem. 272 (49): 30611–4. doi:10.1074/jbc.272.49.30611. PMID 9388193.
  6. ^ "Bloom syndrome". Genetics Home Reference. NIH. Pristupljeno 19. 3. 2013.
  7. ^ a b De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten M (2012). "BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism". Mol. Cell. 46 (1): 43–53. doi:10.1016/j.molcel.2012.02.020. PMC 3328772. PMID 22500736.
  8. ^ a b Séguéla-Arnaud M, Crismani W, Larchevêque C, Mazel J, Froger N, Choinard S, Lemhemdi A, Macaisne N, Van Leene J, Gevaert K, De Jaeger G, Chelysheva L, Mercier R (2015). "Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM". Proc. Natl. Acad. Sci. U.S.A. 112 (15): 4713–8. Bibcode:2015PNAS..112.4713S. doi:10.1073/pnas.1423107112. hdl:1854/LU-6829814. PMC 4403193. PMID 25825745.
  9. ^ Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, Copenhaver GP, Horlow C, Mercier R (2012). "FANCM limits meiotic crossovers". Science. 336 (6088): 1588–90. Bibcode:2012Sci...336.1588C. doi:10.1126/science.1220381. PMID 22723424. S2CID 14570996.
  10. ^ a b Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (april 2000). "BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures". Genes Dev. 14 (8): 927–39. doi:10.1101/gad.14.8.927. PMC 316544. PMID 10783165.
  11. ^ Beamish H, Kedar P, Kaneko H, Chen P, Fukao T, Peng C, Beresten S, Gueven N, Purdie D, Lees-Miller S, Ellis N, Kondo N, Lavin MF (august 2002). "Functional link between BLM defective in Bloom's syndrome and the ataxia-telangiectasia-mutated protein, ATM". J. Biol. Chem. 277 (34): 30515–23. doi:10.1074/jbc.M203801200. PMID 12034743.
  12. ^ Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li JL, Egli D, Hickson ID, Stagljar I (juni 2004). "Physical and functional interaction between the Bloom's syndrome gene product and the largest subunit of chromatin assembly factor 1". Mol. Cell. Biol. 24 (11): 4710–9. doi:10.1128/MCB.24.11.4710-4719.2004. PMC 416397. PMID 15143166.
  13. ^ a b c d Sengupta S, Robles AI, Linke SP, Sinogeeva NI, Zhang R, Pedeux R, Ward IM, Celeste A, Nussenzweig A, Chen J, Halazonetis TD, Harris CC (septembar 2004). "Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest". J. Cell Biol. 166 (6): 801–13. doi:10.1083/jcb.200405128. PMC 2172115. PMID 15364958.
  14. ^ Deans AJ, West SC (24. 12. 2009). "FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia". Mol. Cell. 36 (6): 943–53. doi:10.1016/j.molcel.2009.12.006. PMID 20064461.
  15. ^ Sharma S, Sommers JA, Wu L, Bohr VA, Hickson ID, Brosh RM (mart 2004). "Stimulation of flap endonuclease-1 by the Bloom's syndrome protein". J. Biol. Chem. 279 (11): 9847–56. doi:10.1074/jbc.M309898200. PMID 14688284.
  16. ^ a b Freire R, d'Adda Di Fagagna F, Wu L, Pedrazzi G, Stagljar I, Hickson ID, Jackson SP (august 2001). "Cleavage of the Bloom's syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIalpha". Nucleic Acids Res. 29 (15): 3172–80. doi:10.1093/nar/29.15.3172. PMC 55826. PMID 11470874.
  17. ^ Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J (august 2001). "The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair". J. Biol. Chem. 276 (32): 30031–5. doi:10.1074/jbc.M009664200. PMID 11325959.
  18. ^ Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I (novembar 2001). "Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1". Nucleic Acids Res. 29 (21): 4378–86. doi:10.1093/nar/29.21.4378. PMC 60193. PMID 11691925.
  19. ^ Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (august 2001). "Functional interaction of p53 and BLM DNA helicase in apoptosis". J. Biol. Chem. 276 (35): 32948–55. doi:10.1074/jbc.M103298200. PMID 11399766.
  20. ^ Garkavtsev IV, Kley N, Grigorian IA, Gudkov AV (decembar 2001). "The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control". Oncogene. 20 (57): 8276–80. doi:10.1038/sj.onc.1205120. PMID 11781842.
  21. ^ Yang Q, Zhang R, Wang XW, Spillare EA, Linke SP, Subramanian D, Griffith JD, Li JL, Hickson ID, Shen JC, Loeb LA, Mazur SJ, Appella E, Brosh RM, Karmakar P, Bohr VA, Harris CC (august 2002). "The processing of Holliday junctions by BLM and WRN helicases is regulated by p53". J. Biol. Chem. 277 (35): 31980–7. doi:10.1074/jbc.M204111200. PMID 12080066.
  22. ^ a b Braybrooke JP, Li JL, Wu L, Caple F, Benson FE, Hickson ID (novembar 2003). "Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D)". J. Biol. Chem. 278 (48): 48357–66. doi:10.1074/jbc.M308838200. hdl:10026.1/10297. PMID 12975363.
  23. ^ Wu L, Davies SL, Levitt NC, Hickson ID (juni 2001). "Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51". J. Biol. Chem. 276 (22): 19375–81. doi:10.1074/jbc.M009471200. PMID 11278509.
  24. ^ a b Brosh RM, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID, Bohr VA (august 2000). "Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity". J. Biol. Chem. 275 (31): 23500–8. doi:10.1074/jbc.M001557200. PMID 10825162.
  25. ^ Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (oktobar 2002). "Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases". J. Biol. Chem. 277 (43): 41110–9. doi:10.1074/jbc.M205396200. PMID 12181313.
  26. ^ Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (april 2002). "The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination". J. Cell Sci. 115 (Pt 8): 1611–22. doi:10.1242/jcs.115.8.1611. PMID 11950880.
  27. ^ Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (mart 2000). "The Bloom's syndrome gene product interacts with topoisomerase III". J. Biol. Chem. 275 (13): 9636–44. doi:10.1074/jbc.275.13.9636. PMID 10734115.
  28. ^ Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (juni 2001). "Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability". Hum. Mol. Genet. 10 (12): 1287–98. doi:10.1093/hmg/10.12.1287. PMID 11406610.
  29. ^ von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM, Hickson ID, Bohr VA (juni 2002). "Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins". J. Biol. Chem. 277 (24): 22035–44. doi:10.1074/jbc.M200914200. PMID 11919194.

Dopunska literatura

uredi

Vanjski linkovi

uredi