Kriptohromi (od grčkog κρυπτός χρώμα – kriptos + hroma = "skrivena boja") su klasa flavoproteina pronađenih u biljkama i životinjama koje su osjetljivi na plavo svjetlo. Uključeni su u cirkadijanske ritmove i osjećanje magnetnih polja kod brojnih vrsta. Naziv kriptohrom je predložen kao portmanteau koji kombinuje hromatsku prirodu fotoreceptorskih proteina i kriptogamnih organizama na kojima su provedena mnoga istraživanja plavog svjetlosti.[1][2]

Kriptohrom-1
Kristalografska struktura kriptohroma-1
Identifikatori
SimbolCRY1
NCBI gen1407
HGNC2384
OMIM601933
PDB5T5X
RefSeqNP_004066
UniProtQ16526
Ostali podaci
LokusHrom. 12 q23.3
Pretraga za
StruktureSwiss-model
DomeneInterPro
Kriptohrom-2
Identifikatori
SimbolCRY2
NCBI gen1408
HGNC2385
OMIM603732
PDB4MLP
RefSeqNP_066940
UniProtQ49AN0
Ostali podaci
LokusHrom. 11 p11.2
Pretraga za
StruktureSwiss-model
DomeneInterPro

Dva gena "Cry1" i "Cry2" kodiraju dva kriptohromna proteina, CRY1 i CRY2.[3] Kod insekata i biljaka, CRY1 reguliše cirkadijski sat na način ovisan o svjetlosti, dok kod sisara, CRY1 i CRY2 djeluju kao svjetlosno-nezavisni inhibitori CLOCK-BMAL1, komponente cirkadijskog sata. U biljkama, fotorecepcija plavog svjetla može se koristiti za signaliziranje razvojnih signala. Osim hlorofila, kriptohromi su jedini proteini za koje se zna da formiraju fotoindukovane radikalne parove in vivo.[4] Čini se da one omogućavaju nekim životinjama da otkriju magnetna polja.

Kriptohromi su bili u fokusu nekoliko dosadašnjih napora u optogenetici. Koristeći transfekciju, početne studije na kvascu su iskoristile potencijal heterodimerizacija Cry2 da kontroliše ćelijske procese, uključujući ekspresiju gena, pomoću svetlosti.

Evolucijska historija i struktura

uredi

Kriptohromi (CRY1, CRY2) su evolucijski stari i visoko konzervirani proteini koji pripadaju natporodici flavoproteina koja postoji u svim carstvima života. Svi njeni članovi imaju karakteristike N-terminalnu homologijiju fotolijaze (PHR) domena. PHR domen se može vezati za flavin-adenin dinukleotidni (FAD) kofaktor i hromofor koji sakuplja svjetlost. Kriptohromi su izvedeni od i blisko srodne fotoliazama, koje su bakterijski enzimi koji se aktiviraju svjetlošću i koji su uključeni u popravak oštećenja DNK izazvanog UV zračenjem. Kod eukariota, kriptohromi više ne zadržavaju ovu originalnu enzimsku aktivnost. Struktura kriptohroma uključuje nabor koji je veoma sličan onom fotoliaze, sa jednim molekulom FAD-a koji je nekovalentno vezan za protein, Ovi proteini imaju promjenjive dužine i površine na C-terminalnom kraju, zbog promjena u genomu i izgledu koje su rezultat nedostatka enzima za popravak DNK. Ramachandranov plot pokazuje da je sekundarna struktura CRY1 proteina prvenstveno desnoruki alfa-heliks sa malo ili nimalo sternih preklapanja. Struktura CRY1 je skoro u potpunosti sastavljena od alfa heliksa, sa nekoliko petlji i nekoliko beta-listova. Molekul je raspoređen kao ortogonalni snop.

Funkcija

uredi

Fototropizam

uredi

Kod biljaka, kriptohromi posreduju fototropizam, ili usmjereni rast prema izvoru svjetlosti, kao odgovor na plavo svjetlo. Sada je poznato da ovaj odgovor ima svoj vlastiti skup fotoreceptora, fototropina.

Za razliku od fitohroma i fototropina, kriptohromi nisu kinaze. Njihov flavinski hromofor se redukuje pod uticajem svetlosti i transportuje u ćelijsko jedro, gde utiče na turgorski pritisak i uzrokuje naknadno izduživanje stabljike. Preciznije, „Cry2“ je odgovoran za kotiledone, posredovano plavom svjetlošću i širenje listova. Prekomjerna ekspresija Cry2 u transgenim biljkama povećava širenje kotiledona, stimulirano plavim svjetlom, što rezultira velikim brojem širokih listova i bez cvjetova, umjesto nekoliko primarnih listova s cvijetom. Dvostruka mutacija gubitka funkcije u genima Arabidopsis thaliana rnocvjetajućeg elf3) i Cry2 odgađa cvjetanje pod kontinuiranim svjetlom i pokazalo se da ga ubrzava tokom dugih i kratkih dana, što sugerira da Arabidopsis CRY2 može imati ulogu u ubrzavanju vremena cvjetanja tokom neprekidnog svetla.

Fotomorfogeneza

uredi

Receptori kriptohroma uzrokuju da biljke reaguju na plavo svjetlo putem fotomorfogeneze. Pomažu u kontroli razvoja sjemena i sadnica, kao i prelasku iz vegetativne u fazu cvjetanja. U Arabidopsis je pokazano da kriptohromi kontrolišu rast biljaka tokom suboptimalnih uslova plavog svetla.

Snimanje svjetla

uredi

Uprkos velikom broju istraživanja o ovoj temi, kriptohromska fotorecepcija i fototransdukcija kod Drosophila i Arabidopsis thaliana još uvijek su slabo shvaćene. Poznato je da kriptohromi posjeduju dva hromofora: pterin (u obliku 5,10-meteniltetrahidrofolne kisekine (MTHF)) i flavin (u obliku FAD-a). Oba mogu apsorbirati foton, a u arabidopsisu se čini da pterin apsorbuje na talasnoj dužini od 380 nm, a flavin na 450 nm. Prethodne studije su podržale model kojim se energija zarobljena pterinom prenosi na flavin. Pod ovim modelom fototransdukcije, FAD bi tada bio reduciran u FADH, koji vjerovatno posreduje u fosforilaciji određenog domena u kriptohromu. Ovo bi onda moglo pokrenuti lanac transdukcija signala, što bi moglo utjecati na regulaciju gena u ćelijskom jedru.

Nova hipoteza predlaže da u biljnim kriptohromima transdukcija svjetlosnog signala u hemijski signal koji mogu osjetiti partnerske molekule može biti pokrenuta fotoinduciranim negativnim nabojem unutar proteina - na kofaktor FAD ili na susjednu asparaginsku kiselinu. Ovaj negativni naboj bi elektrostatički odbio molekulu ATP vezanu za proteine, a time i protein C-terminalni domen, koji pokriva ATP vezni džep prije apsorpcije fotona. Rezultirajuća promjena u konformaciji proteina mogla bi dovesti do fosforilacije prethodno nedostupnih fosforilacijskih mjesta na C-terminalu i dati fosforilirani segment bi tada mogao osloboditi transkripcijski faktor HY5, takmičeći se za isto mjesto vezivanja na negativnom regulatoru fotomorfogeneze COP1 .

Kod Drosophila može funkcionirati drugačiji mehanizam. Pravo osnovno stanje kofaktora flavina u Drosophila CRY se još uvijek raspravlja, a neki modeli ukazuju da je FAD u oksidiranom obliku, dok drugi podržavaju model u kojem flavinski kofaktor postoji u anionskom radikalnom obliku, FAD•. Nedavno je u istraživanjimaa primiječeno da se oksidirani FAD lahko redukuje svjetlom u FAD•. Štaviše, mutacije da blokirana fotoredukcija nije imala efekta na razgradnju CRY izazvanu svjetlom, dok su mutacije koje su promijenile stabilnost FAD• uništile funkciju CRY fotoreceptora.[5][6] Ova zapažanja pružaju podršku za osnovno stanje FAD•. Istraživači su također nedavno predložili model u kojem se FAD pobuđuje u svoje dubletno ili kvartetno stanje apsorpcijom fotona, što zatim dovodi do konformacijske promjene u CRY proteinu .[6]

Također, prstenaste oči larve demosunđera Amphimedon queenslandica izražavaju kriptohrom osetljiv na plavo svetlo (Aq-Cry2), koji bi mogao da posreduje fototaksiju. Nasuprot tome, oči većine životinja koriste fotoosjetljive opsine eksprimirane u fotoreceptorskim ćelijama, koje prenose informacije o svjetlosti iz okoline u nervni sistem. Međutim, A. queenslandica nema nervni sistem, kao i druge spužve. A također nema opsinski gen u svom potpuno sekvenciranom genomu, uprkos tome što ima mnogo drugih G-protein-spregnutih receptora (GPCR). Prema tome, jedinstvene oči spužve mora da su razvile drugačiji mehanizam za detekciju svjetlosti i posredovanje fototaksije, vjerovatno pomoću kriptohroma ili drugih proteina.

Funkcija šarenice

uredi

Šarenica kokošijih embriona osjeća svjetlo kratkih talasa preko kriptohroma, a ne opsina.[7]

Studije na životinjama i biljkama sugeriraju da kriptohromi imaju ključnu ulogu u stvaranju i održavanju cirkadijalnih ritmova. Slično tome, kriptohromi imaju važnu ulogu i u uvlačenju cirkadijskih ritmova u biljke. Kod Drosophila, kriptohrom (dCRY) djeluje kao fotoreceptor plave svjetlosti koji direktno modulira ulaz svjetlosti u cirkadijski sat, dok kod sisara kriptohromi (CRY1 i CRY2) djeluju kao transkripcijski represor unutar cirkadijsog sata. Neki insekti, uključujući reptira monarha, imaju sisarima i drozofilama slične verzije kriptohroma, pružajući dokaze za prastari mehanizam sata koji uključuje i ulogu senzora svetlosti i uloge transkripcione represije za kriptohrom.

Cry mutant je izmijenio cirkadijske ritmove, pokazujući da utiče na cirkadijski pejsmejker. Drosophila sa mutiranim Cry pokazuje malo ili nimalo ciklusa iRNK. Tačkasta mutacija u cryb, koja je potrebna za asocijaciju flavina u CRY proteinu, rezultira bez PER ili TIM cikliranja proteina ni u DD ni u LD. Osim toga, miševi kojima nedostaju "Cry1" ili "Cry2" geni pokazuju različito izmijenjene slobodne periode trčanja, ali su i dalje sposobni za fotopomjeranje. Međutim, miševi kojima nedostaju i Cry1 i Cry2 su aritmični u LD i DD i uvijek imaju visoke Per1 nivoe iRNK. Ovi rezultati sugeriraju da kriptohromi imaju fotoreceptivnu ulogu, kao i da djeluju kao negativni regulatori ekspresije gena Per kod miševa.

Magnetorecepcija

uredi

Magnetorecepcija je čulo koje omogućava organizmu da detektuje magnetsko polje kako bi uočio pravac, nadmorsku visinu ili lokaciju. Eksperimentalni podaci sugeriraju da su kriptohromi u fotoreceptorskim neuronima ptičjih očiju uključeni u magnetnu orijentaciju tokom migracije. Smatra se da su i kriptohromi uključeni u magnetnu orijentaciju tokom migracija ptica od suštinskog značaja za sposobnost Drosophila zavisne od svetlosti da oseti magnetna polja. Nekada je prijavljeno da magnetna polja utiču na kriptohrome i u Arabidopsis thaliana: činilo se da na ponašanje utieču magnetna polja u prisustvu plave (ali ne crvene) svjetlosti[8] Ipak, kasnije se pokazalo da su ovi rezultati neponovljivi pod strogo kontroliranim uvjetima u drugom laboratorija, sugerirajući da biljni kriptohromi ne reaguju na magnetna polja.

 
Mehanizam radikalnih parova je predložen za kvantnu magnetorecepciju kod ptica.[9]

Kriptohrom formira par radikal sa koreliranim spinom kada je izložen plavoj svjetlosti.[10] Parovi radikala se također mogu generirati reoksidacijom kofaktora flavina u mraku nezavisnom od svjetla molekulskim kisikom kroz formiranje parova radikala koreliranih sa FADH-superoksidom. Pretpostavlja se da magnetorecepcija funkcionišu kroz uticaj okolnog magnetnog polja na korelaciju (paralelnu ili antiparalelnu) ovih radikala, što utiče na životni vijek aktiviranog oblika kriptohroma. Aktivacija kriptohroma može uticati na osetljivost na svjetlost neurona mrežnjačel, sa ukupnim rezultatom da životinja može da oseti magnetno polje.[11] Životinjski kriptohromi i blisko srodne životinje (6-4 ) fotolijaze sadrže duži lanac triptofana za prijenos elektrona od ostalih proteina natporodice kriptohrom-fotolijaza (triptofanska tetrada umjesto trijade). Što je duže lanac dovodi do boljeg razdvajanja i preko 1000 puta dužeg vijeka trajanja fotoinduciranih parova radikala flavin-triptofan nego u proteinima sa trijadom triptofana. Odsustvo spin-selektivnih rekombinacija ovih radikalnih parova na vremenskim skalama od nanosekunde do mikrosekunde izgleda nekompatibilna sa sugestijom da je magnetorecepcija kriptohroma zasnovana na reakciji prednjeg svjetla.

Reference

uredi
  1. ^ Gressel, J. (1979). "Blue Light Photoreception". Photochemistry and Photobiology (jezik: engleski). 30 (6): 749–754. doi:10.1111/j.1751-1097.1979.tb07209.x. ISSN 1751-1097. S2CID 98643540.
  2. ^ Yang Z, Liu B, Su J, Liao J, Lin C, Oka Y (januar 2017). "Cryptochromes Orchestrate Transcription Regulation of Diverse Blue Light Responses in Plants". Photochemistry and Photobiology. 93 (1): 112–127. doi:10.1111/php.12663. PMC 6167254. PMID 27861972.
  3. ^ van der Spek PJ, Kobayashi K, Bootsma D, Takao M, Eker AP, Yasui A (oktobar 1996). "Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors". Genomics. 37 (2): 177–182. doi:10.1006/geno.1996.0539. hdl:1765/55742. PMID 8921389.
  4. ^ Hore PJ, Mouritsen H (juli 2016). "The Radical-Pair Mechanism of Magnetoreception". Annual Review of Biophysics. 45 (1): 299–344. doi:10.1146/annurev-biophys-032116-094545. PMID 27216936. S2CID 7099782.
  5. ^ Song SH, Oztürk N, Denaro TR, Arat NO, Kao YT, Zhu H, et al. (juni 2007). "Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly". The Journal of Biological Chemistry. 282 (24): 17608–17612. doi:10.1074/jbc.M702874200. PMID 17459876.
  6. ^ a b Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A (januar 2011). "Reaction mechanism of Drosophila cryptochrome". Proceedings of the National Academy of Sciences of the United States of America. 108 (2): 516–521. Bibcode:2011PNAS..108..516O. doi:10.1073/pnas.1017093108. PMC 3021015. PMID 21187431.
  7. ^ Tu DC, Batten ML, Palczewski K, Van Gelder RN (oktobar 2004). "Nonvisual photoreception in the chick iris". Science. 306 (5693): 129–131. Bibcode:2004Sci...306..129T. doi:10.1126/science.1101484. PMID 15459395. S2CID 26821205.
  8. ^ Ahmad M, Cashmore AR (novembar 1993). "HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor". Nature. 366 (6451): 162–166. Bibcode:1993Natur.366..162A. doi:10.1038/366162a0. PMID 8232555. S2CID 4256360.
  9. ^ Hore, Peter J.; Mouritsen, Henrik (april 2022). "The Quantum Nature of Bird Migration". Scientific American: 24–29.
  10. ^ Biskup T, Schleicher E, Okafuji A, Link G, Hitomi K, Getzoff ED, Weber S (2009). "Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor". Angewandte Chemie. 48 (2): 404–407. doi:10.1002/anie.200803102. PMC 4329312. PMID 19058271.
  11. ^ Chandler D, Ilia Solov'yov I, Schulten K. "Cryptochrome and Magnetic Sensing". Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign. Pristupljeno 14. 4. 2011.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]


[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24] [25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]


[44]

[45]

[46]

[47]

Vanjski linkovi

uredi


  1. ^ Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (februar 2007). "Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana". Planta. 225 (3): 615–624. doi:10.1007/s00425-006-0383-0. PMID 16955271. S2CID 96263.
  2. ^ Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E (april 2007). "A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome". The Journal of Biological Chemistry. 282 (17): 13011–13021. doi:10.1074/jbc.M608872200. PMID 17298948.
  3. ^ Biskup T, Schleicher E, Okafuji A, Link G, Hitomi K, Getzoff ED, Weber S (2009). "Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor". Angewandte Chemie. 48 (2): 404–407. doi:10.1002/anie.200803102. PMC 4329312. PMID 19058271.
  4. ^ PDB 1u3c; Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (august 2004). "Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana". Proceedings of the National Academy of Sciences of the United States of America. 101 (33): 12142–12147. Bibcode:2004PNAS..10112142B. doi:10.1073/pnas.0404851101. PMC 514401. PMID 15299148.
  5. ^ Busza A, Emery-Le M, Rosbash M, Emery P (juni 2004). "Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception". Science. 304 (5676): 1503–1506. Bibcode:2004Sci...304.1503B. doi:10.1126/science.1096973. PMID 15178801. S2CID 18388605.
  6. ^ Cailliez F, Müller P, Gallois M, de la Lande A (septembar 2014). "ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome". Journal of the American Chemical Society. 136 (37): 12974–12986. doi:10.1021/ja506084f. PMID 25157750.
  7. ^ Cailliez F, Müller P, Firmino T, Pernot P, de la Lande A (februar 2016). "Energetics of Photoinduced Charge Migration within the Tryptophan Tetrad of an Animal (6-4) Photolyase". Journal of the American Chemical Society. 138 (6): 1904–1915. doi:10.1021/jacs.5b10938. PMID 26765169.
  8. ^ Chandler D, Ilia Solov'yov I, Schulten K. "Cryptochrome and Magnetic Sensing". Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign. Pristupljeno 14. 4. 2011.
  9. ^ Darwin C (1881). The Power of Movement in Plants. New York: D. Appleton and Company.
  10. ^ Dunlap JC (januar 1999). "Molecular bases for circadian clocks". Cell. 96 (2): 271–290. doi:10.1016/S0092-8674(00)80566-8. PMID 9988221. S2CID 14991100.
  11. ^ Emery P, So WV, Kaneko M, Hall JC, Rosbash M (novembar 1998). "CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity". Cell. 95 (5): 669–679. doi:10.1016/S0092-8674(00)81637-2. PMID 9845369. S2CID 15629055.
  12. ^ Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M (maj 2000). "Drosophila CRY is a deep brain circadian photoreceptor". Neuron. 26 (2): 493–504. doi:10.1016/S0896-6273(00)81181-2. PMID 10839367. S2CID 15553260.
  13. ^ Fogle KJ, Parson KG, Dahm NA, Holmes TC (mart 2011). "CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate". Science. 331 (6023): 1409–1413. Bibcode:2011Sci...331.1409F. doi:10.1126/science.1199702. PMC 4418525. PMID 21385718.
  14. ^ Gegear RJ, Casselman A, Waddell S, Reppert SM (august 2008). "Cryptochrome mediates light-dependent magnetosensitivity in Drosophila". Nature. 454 (7207): 1014–1018. Bibcode:2008Natur.454.1014G. doi:10.1038/nature07183. PMC 2559964. PMID 18641630.
  15. ^ Griffin EA, Staknis D, Weitz CJ (oktobar 1999). "Light-independent role of CRY1 and CRY2 in the mammalian circadian clock". Science. 286 (5440): 768–771. doi:10.1126/science.286.5440.768. PMID 10531061.
  16. ^ Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore PJ, Okamoto H (decembar 2009). "Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana". Journal of the Royal Society, Interface. 6 (41): 1193–1205. doi:10.1098/rsif.2008.0519. PMC 2817153. PMID 19324677.
  17. ^ Hattar S, Liao HW, Takao M, Berson DM, Yau KW (februar 2002). "Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity". Science. 295 (5557): 1065–1070. Bibcode:2002Sci...295.1065H. doi:10.1126/science.1069609. PMC 2885915. PMID 11834834.
  18. ^ Heyers D, Manns M, Luksch H, Güntürkün O, Mouritsen H (septembar 2007). Iwaniuk A (ured.). "A visual pathway links brain structures active during magnetic compass orientation in migratory birds". PLOS ONE. 2 (9): e937. Bibcode:2007PLoSO...2..937H. doi:10.1371/journal.pone.0000937. PMC 1976598. PMID 17895978.
  19. ^ Hoang N, Bouly JP, Ahmad M (januar 2008). "Evidence of a light-sensing role for folate in Arabidopsis cryptochrome blue-light receptors". Molecular Plant. 1 (1): 68–74. doi:10.1093/mp/ssm008. PMID 20031915.
  20. ^ Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, et al. (juli 2008). Schibler U (ured.). "Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells". PLOS Biology. 6 (7): e160. doi:10.1371/journal.pbio.0060160. PMC 2443192. PMID 18597555.
  21. ^ Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, et al. (novembar 1996). "Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins". Biochemistry. 35 (44): 13871–13877. doi:10.1021/bi962209o. PMID 8909283.
  22. ^ Klarsfeld A, Malpel S, Michard-Vanhée C, Picot M, Chélot E, Rouyer F (februar 2004). "Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila". The Journal of Neuroscience. 24 (6): 1468–1477. doi:10.1523/JNEUROSCI.3661-03.2004. PMC 6730330. PMID 14960620.
  23. ^ Somers DE, Devlin PF, Kay SA (novembar 1998). "Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock". Science. 282 (5393): 1488–1490. doi:10.1126/science.282.5393.1488. PMID 9822379. S2CID 24882653.
  24. ^ Nelson DR, Lehninger AL, Cox M (2005). Lehninger Principles of Biochemistry. New York: W.H. Freeman. ISBN 978-0-7167-4339-2.
  25. ^ Müller P, Ahmad M (juni 2011). "Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception". The Journal of Biological Chemistry. 286 (24): 21033–21040. doi:10.1074/jbc.M111.228940. PMC 3122164. PMID 21467031.
  26. ^ Müller P, Bouly JP, Hitomi K, Balland V, Getzoff ED, Ritz T, Brettel K (juni 2014). "ATP binding turns plant cryptochrome into an efficient natural photoswitch". Scientific Reports. 4: 5175. Bibcode:2014NatSR...4E5175M. doi:10.1038/srep05175. PMC 4046262. PMID 24898692.
  27. ^ Müller P, Bouly JP (januar 2015). "Searching for the mechanism of signalling by plant photoreceptor cryptochrome" (PDF). FEBS Letters. 589 (2): 189–192. doi:10.1016/j.febslet.2014.12.008. PMID 25500270. S2CID 207635307.
  28. ^ Müller P, Yamamoto J, Martin R, Iwai S, Brettel K (novembar 2015). "Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases". Chemical Communications. 51 (85): 15502–15505. doi:10.1039/C5CC06276D. PMID 26355419.
  29. ^ Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, et al. (maj 2011). "Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light". Journal of Experimental Botany. 62 (8): 2731–2744. doi:10.1093/jxb/erq450. PMID 21296763.
  30. ^ Öztürk N, Song SH, Selby CP, Sancar A (februar 2008). "Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis". The Journal of Biological Chemistry. 283 (6): 3256–3263. doi:10.1074/jbc.M708612200. PMID 18056988.
  31. ^ Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J, Ljung K, et al. (januar 2016). "Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light". Cell. 164 (1–2): 233–245. doi:10.1016/j.cell.2015.12.018. PMC 4721562. PMID 26724867.
  32. ^ Reppert SM, Weaver DR (august 2002). "Coordination of circadian timing in mammals". Nature. 418 (6901): 935–941. Bibcode:2002Natur.418..935R. doi:10.1038/nature00965. PMID 12198538. S2CID 4430366.
  33. ^ Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Sancar A, Oakley TH (april 2012). "Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin". The Journal of Experimental Biology. 215 (Pt 8): 1278–1286. doi:10.1242/jeb.067140. PMC 3309880. PMID 22442365.
  34. ^ Rodgers CT, Hore PJ (januar 2009). "Chemical magnetoreception in birds: the radical pair mechanism". Proceedings of the National Academy of Sciences of the United States of America. 106 (2): 353–360. Bibcode:2009PNAS..106..353R. doi:10.1073/pnas.0711968106. PMC 2626707. PMID 19129499.
  35. ^ Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N (juni 2010). "Circadian clock control of the cellular response to DNA damage". FEBS Letters. 584 (12): 2618–2625. doi:10.1016/j.febslet.2010.03.017. PMC 2878924. PMID 20227409.
  36. ^ Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, et al. (mart 2006). "Feedback repression is required for mammalian circadian clock function". Nature Genetics. 38 (3): 312–319. doi:10.1038/ng1745. PMC 1994933. PMID 16474406.
  37. ^ Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A (decembar 2000). "Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice". Proceedings of the National Academy of Sciences of the United States of America. 97 (26): 14697–14702. Bibcode:2000PNAS...9714697S. doi:10.1073/pnas.260498597. PMC 18981. PMID 11114194.
  38. ^ Song SH, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen LO (oktobar 2006). "Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana". Journal of Photochemistry and Photobiology. B, Biology. 85 (1): 1–16. doi:10.1016/j.jphotobiol.2006.03.007. PMID 16725342.
  39. ^ Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, et al. (novembar 1998). "The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila". Cell. 95 (5): 681–692. doi:10.1016/S0092-8674(00)81638-4. PMID 9845370. S2CID 6996815.
  40. ^ Thompson CL, Sancar A (2004). "Cryptochrome: Discovery of a Circadian Photopigment". u Lenci F, Horspool WM (ured.). CRC handbook of organic photochemistry and photobiology. Boca Raton: CRC Press. str. 1381–89. ISBN 978-0-8493-1348-6.
  41. ^ Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, et al. (april 1996). "Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family". Science. 272 (5258): 109–112. Bibcode:1996Sci...272..109T. doi:10.1126/science.272.5258.109. PMID 8600518. S2CID 23151554.
  42. ^ Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (januar 2011). "Delay in feedback repression by cryptochrome 1 is required for circadian clock function". Cell. 144 (2): 268–281. doi:10.1016/j.cell.2010.12.019. PMID 21236481. S2CID 8159963.
  43. ^ "MolProbity Ramachandran analysis,1U3C, model 1" (PDF). www.rcsb.org. Arhivirano s originala (PDF), 21. 10. 2012. Pristupljeno 13. 4. 2011.
  44. ^ Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, et al. (oktobar 1999). "Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2". Proceedings of the National Academy of Sciences of the United States of America. 96 (21): 12114–12119. Bibcode:1999PNAS...9612114V. doi:10.1073/pnas.96.21.12114. PMC 18421. PMID 10518585.
  45. ^ Weber S (februar 2005). "Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1707 (1): 1–23. doi:10.1016/j.bbabio.2004.02.010. PMID 15721603.
  46. ^ Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM (januar 2008). "Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation". PLOS Biology. 6 (1): e4. doi:10.1371/journal.pbio.0060004. PMC 2174970. PMID 18184036.
  47. ^ Zhu H, Yuan Q, Briscoe AD, Froy O, Casselman A, Reppert SM (decembar 2005). "The two CRYs of the butterfly". Current Biology. 15 (23): R953–R954. doi:10.1016/j.cub.2005.11.030. PMID 16332522. S2CID 2130485.