Ljudski regulacijski protein homeostaze gvožđa, poznat protein HFE, jest protein koji je kod ljudi kodiran genom HFE. Gen HFE nalazi se na kratkom (p) kraku kromosoma 6 na lokaciji 6p22.2 [5]

HFE
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

1DE4, 1A6Z

Identifikatori
AliasiHFE
Vanjski ID-jeviOMIM: 613609 MGI: 109191 HomoloGene: 88330 GeneCards: HFE
Lokacija gena (čovjek)
Hromosom 6 (čovjek)
Hrom.Hromosom 6 (čovjek)[1]
Hromosom 6 (čovjek)
Genomska lokacija za HFE
Genomska lokacija za HFE
Bend6p22.2Početak26,087,281 bp[1]
Kraj26,098,343 bp[1]
Lokacija gena (miš)
Hromosom 13 (miš)
Hrom.Hromosom 13 (miš)[2]
Hromosom 13 (miš)
Genomska lokacija za HFE
Genomska lokacija za HFE
Bend13 A3.1|13 9.88 cMPočetak23,886,017 bp[2]
Kraj23,894,837 bp[2]
Obrazac RNK ekspresije




Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija peptide antigen binding
beta-2-microglobulin binding
co-receptor binding
GO:0001948, GO:0016582 vezivanje za proteine
transferrin receptor binding
signaling receptor binding
natural killer cell lectin-like receptor binding
Ćelijska komponenta integral component of membrane
reciklirajući endosom
HFE-transferrin receptor complex
membrana
basal part of cell
ćelijska membrana
apical part of cell
integral component of plasma membrane
terminal web
early endosome
MHC class I protein complex
perinuklearno područje citoplazme
GO:0016023 citoplazmatska vezikula
external side of plasma membrane
Vanćelijsko
Biološki proces negative regulation of T cell antigen processing and presentation
positive regulation of peptide hormone secretion
positive regulation of receptor-mediated endocytosis
cellular response to iron ion
antigen processing and presentation
negative regulation of receptor binding
regulation of protein localization to cell surface
antigen processing and presentation of peptide antigen via MHC class I
female pregnancy
positive regulation of pathway-restricted SMAD protein phosphorylation
response to iron ion starvation
iron ion homeostasis
negative regulation of antigen processing and presentation of endogenous peptide antigen via MHC class I
ion transport
BMP signaling pathway
cellular response to iron ion starvation
response to iron ion
multicellular organismal iron ion homeostasis
positive regulation of ferrous iron binding
positive regulation of transferrin receptor binding
positive regulation of signaling receptor activity
liver regeneration
GO:1901313 positive regulation of gene expression
negative regulation of T cell cytokine production
acute-phase response
negative regulation of proteasomal ubiquitin-dependent protein catabolic process
negative regulation of ubiquitin-dependent protein catabolic process
positive regulation of receptor binding
negative regulation of signaling receptor activity
positive regulation of protein binding
hormone biosynthetic process
negative regulation of CD8-positive, alpha-beta T cell activation
cellular iron ion homeostasis
iron ion import across plasma membrane
transferrin transport
GO:0034622 protein-containing complex assembly
T cell mediated cytotoxicity
GO:0046730, GO:0046737, GO:0046738, GO:0046736 Imuni odgovor
natural killer cell activation
natural killer cell mediated cytotoxicity
susceptibility to natural killer cell mediated cytotoxicity
GO:1900400 regulation of iron ion transport
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)
NM_000410
NM_001300749
NM_139002
NM_139003
NM_139004

NM_139005
NM_139006
NM_139007
NM_139008
NM_139009
NM_139010
NM_139011
NM_001384164

NM_010424
NM_001347493

RefSeq (bjelančevina)
NP_000401
NP_001287678
NP_620572
NP_620573
NP_620575

NP_620576
NP_620577
NP_620578
NP_620579
NP_620580
NP_001371093

NP_001334422
NP_034554

Lokacija (UCSC)Chr 6: 26.09 – 26.1 MbChr 13: 23.89 – 23.89 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 348 aminokiselina, а molekulska težina 40.108 Da.[6]

1020304050
MGPRARPALLLLMLLQTAVLQGRLLRSHSLHYLFMGASEQDLGLSLFEAL
GYVDDQLFVFYDHESRRVEPRTPWVSSRISSQMWLQLSQSLKGWDHMFTV
DFWTIMENHNHSKESHTLQVILGCEMQEDNSTEGYWKYGYDGQDHLEFCP
DTLDWRAAEPRAWPTKLEWERHKIRARQNRAYLERDCPAQLQQLLELGRG
VLDQQVPPLVKVTHHVTSSVTTLRCRALNYYPQNITMKWLKDKQPMDAKE
FEPKDVLPNGDGTYQGWITLAVPPGEEQRYTCQVEHPGLDQPLIVIWEPS
PSGTLVIGVISGIAVFVVILFIGILFIILRKRQGSRGAMGHYVLAERE

Funkcija

uredi

Protein kodiran ovim genom je membranski protein sličan proteinima MHC klase I i asocira na beta-2 mikroglobulin (beta2M). Smatra se da ovaj protein funkcionira tako da regulira cirkulaciju unosa gvožđa, regulirajući interakciju receptora transferina s transferinom.[7]

Gen HFE sadrži sedam egzona u rasponu od 12 kb.[8] Puna dužina transkripta predstavlja šest egzona.[9]

Protein HFE sastoji se od 343 aminokiseline. Postoji nekoliko komponenti, u nizu: signalni peptid (početni dio proteina), vanćelijsko područje vezivanja receptora transferina (α1 i α2), dio koji podsjeća na molekule imunoglobulina (α3), transmembransko područje koje usidruje protein u ćelijsku membranu i kratki citoplazmatski rep.[8]

Ekspresija HFE-a prolazi kroz alternativnu preradu. Preovlađujući cjeloviti transkript HFE-a ima ~ 4,2 kb.[10] Alternativne varijante transkripta HFE –a, u određenim ćelijama ili tkivima, mogu poslužiti kao regulatorni mehanizmi gvožđa.[10]

HFE je istaknut u apsorpcijskim ćelijama tankog crijeva,[11][12] epitelnim ćelijama želuca, tkivnim makrofagima, te krvnim monocitima i granulocitima,[12][13] i sincitiotrofoblastima, transportnom tkivu gvožđa u posteljici.[14]

Klinički značaj

uredi

Poremećaj skladištenja gvožđa nasljedna hemohromatoza (HHC) je autosomno recesivni genetički poremećaj koji je obično posljedica defekata ovog gena.

Genetička varijanta koja uzrokuje bolest najčešće je povezana s hemohromatozom p. C282Y. Oko 1/200 ljudi sjevernoevropskog porijekla ima dvije kopije ove varijante; oni, posebno muškarci, imaju veliki rizik od razvoja hemohromatoze.[15] Ova varijanta može biti i jedan od faktora koji mijenjaju fenotip Wilsonove bolesti, zbog čega se simptomi bolesti pojavljuju ranije.[16]

Učestalosti alela HFE C282Y u etnički raznolikim populacijama a kavkazoida u zapadnoj Evropi su 5-14%[17][18] a u Sjevernoj Americi nehispanoidni kavkazoidi imaju 6-7%.[19] C282Y postoji kao polimorfizam samo u zapadnoevropskoj populaciji kavkazoida i njihovih derivata, iako je C282Y mogao nastati nezavisno kod nekavkazoida izvan Evrope.[20]

HFE H63D je kosmopolitski, ali se javlja najvećom učestalošću kod kavkazoida evropskog porijekla.[21][22] Učestalost alela H63D u etnički raznolikoj populaciji Zapadne Evrope iznosi 10-29%.[23] and in North American non-Hispanic whites are 14-15%.[24]

Otkrivene su najmanje 42 mutacije koje uključuju HFE-ove introne i egzone, od kojih većina u osoba s hemohromatozom ili članova njihove porodice.[25] Većina ovih mutacija je rijetka. Mnoge mutacije uzrokuju ili vjerovatno uzrokuju fenotipove hemohromatoza, često u složenoj heterozigotnosti s HFE C282Y. Druge mutacije su ili sinonimne ili njihov učinak na fenotipove sa gvožđem, ako ih ima, nije dokazan.[25]

Interakcije

uredi

HFE protein stupa u interakcije s receptorom transferina TFRC.[26][27] Njegov primarni način djelovanja je regulacija hormona skladištenja gvožđevog hepcidina.[28]

Moguće je deletirati dio ili cijeli gen od inzteresakoji kod miševa (ili drugih pokusnih životinja) kao sredstvo za proučavanje funkcije gena i njegovih proteina. Takvi se miševi nazivaju "nokaut-miševima" s obzirom na ideletirani gen. Hfe je mišji ekvivalent gena ljudskee hemohromatoze HFE. Protein koji kodira Hfe je Hfe. Homozigotni miševi (dvije abnormalne kopije gena) za ciljano izbacivanje svih šest transkribiranih Hfe egzona označeni su kao Hfe–/–.[29] Svojstva koja su u vezi sa gvožđem kod miševa Hfe–/– , uključujući povećanu apsorpciju gvožđa i opterećenje jetre gvožđem, nasljeđuju se po autosomno recesivnom obrascu. Dakle, Hfe–/– mišji model simulira važne genetičke i fiziološke abnormalnosti HFE hemohromatoze.[29] Ostali nokaut-miševi generiranii su za deleciju drugog i trećeg Hfe egzona (što odgovara α1 i α2 domenima Hfe). Homozigotni miševi za ovu deleciju također su imali povećanu apsorpciju gvožđa u duodenumu, povišenu razinu zasićenja gvpžđemm u plazmi i transferinom i preopterećenje gvožđem, uglavnom u hepatocitima.[30] Takođe su stvoreni miševi koji su homozigotni za misens mutaciju u Hfe (C282Y). Ovi miševi odgovaraju osobama s hemohromatozom koje su homozigotne za HFE C282Y. Ovi miševi razvijaju opterećenje gvožđem koje je manje ozbiljno od opterećenja miša Hfe–/–.[31]

HFE mutacije i preopterećenje gvožđem kod ostalih životinja

uredi

Crni nosorog (Diceros bicornis) dobijaija preopterećenje gvožđem. Kako bi se utvrdilo je li gen HFE crnih nosoroga podvrgnut mutaciji kao adaptivni mehanizam za poboljšanje apsorpcije gvožđa iz heane siromašne gvožđem, Beutler et al. sekvencirali su cijelu HFE šifrirajuću regiju četiri vrste nosoroga (po dvije listojedne i ispaši). Iako je HFE dobro konzerviran među vrstama, pronađene su brojne nukleotidne razlike između nosoroga i čovjeka ili miša, od kojih su neke promijenile podrazumijvajuće aminokiseline. Samo jedan alel, p.S88T crnog nosoroga, bio je kandidat koji bi mogao negativno utjecati na funkciju HFE. p.S88T javlja se u visoko konzerviranoj regiji uključenoj u interakciju HFE i TfR1.[32]

Također pogledajte

uredi

Napomena

uredi

Greška: Imena pokazatelja stanja stranice ne smiju biti prazna.

  {{{tekst}}}

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000010704 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000006611 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "HGNC: HFE". Pristupljeno 30. 8. 2019.
  6. ^ "UniProt, Q30201" (jezik: engleski). Pristupljeno 3. 10. 2021.
  7. ^ "NCBI Gene: HFE homeostatic iron regulator". National Center for Biotechnology Information. Pristupljeno 30. 11. 2020.  Ovaj članak sadrži tekst iz ovog izvora, koji je u javnom vlasništvu.
  8. ^ a b Feder, JN; Gnirke, A; Thomas, W; Tsuchihashi, Z; Ruddy, DA; Basava, A; Dormishian, F; Domingo R, Jr; Ellis, MC; Fullan, A; Hinton, LM; Jones, NL; Kimmel, BE; Kronmal, GS; Lauer, P; Lee, VK; Loeb, DB; Mapa, FA; McClelland, E; Meyer, NC; Mintier, GA; Moeller, N; Moore, T; Morikang, E; Prass, CE; Quintana, L; Starnes, SM; Schatzman, RC; Brunke, KJ; Drayna, DT; Risch, NJ; Bacon, BR; Wolff, RK (august 1996). "A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis". Nature Genetics. 13 (4): 399–408. doi:10.1038/ng0896-399. PMID 8696333. S2CID 26239768.
  9. ^ Dorak, M.T. (mart 2008). "HFE (hemochromatosis)". Atlas of Genetics and Cytogenetics in Oncology and Haematology. Arhivirano s originala, 29. 9. 2017. Pristupljeno 17. 6. 2020.
  10. ^ a b Martins, R; Silva, B; Proença, D; Faustino, P (3. 3. 2011). "Differential HFE gene expression is regulated by alternative splicing in human tissues". PLOS ONE. 6 (3): e17542. Bibcode:2011PLoSO...617542M. doi:10.1371/journal.pone.0017542. PMC 3048171. PMID 21407826.
  11. ^ Waheed, A; Parkkila, S; Saarnio, J; Fleming, RE; Zhou, XY; Tomatsu, S; Britton, RS; Bacon, BR; Sly, WS (16. 2. 1999). "Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum". Proceedings of the National Academy of Sciences of the United States of America. 96 (4): 1579–84. Bibcode:1999PNAS...96.1579W. doi:10.1073/pnas.96.4.1579. PMC 15523. PMID 9990067.
  12. ^ a b Griffiths, WJ; Kelly, AL; Smith, SJ; Cox, TM (septembar 2000). "Localization of iron transport and regulatory proteins in human cells". QJM : Monthly Journal of the Association of Physicians. 93 (9): 575–87. doi:10.1093/qjmed/93.9.575. PMID 10984552.
  13. ^ Parkkila, S; Parkkila, AK; Waheed, A; Britton, RS; Zhou, XY; Fleming, RE; Tomatsu, S; Bacon, BR; Sly, WS (april 2000). "Cell surface expression of HFE protein in epithelial cells, macrophages, and monocytes". Haematologica. 85 (4): 340–5. PMID 10756356.
  14. ^ Parkkila, S; Waheed, A; Britton, RS; Bacon, BR; Zhou, XY; Tomatsu, S; Fleming, RE; Sly, WS (25. 11. 1997). "Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis". Proceedings of the National Academy of Sciences of the United States of America. 94 (24): 13198–202. Bibcode:1997PNAS...9413198P. doi:10.1073/pnas.94.24.13198. PMC 24286. PMID 9371823.
  15. ^ "Hemochromatosis". Arhivirano s originala, 18. 3. 2007. Pristupljeno 20. 8. 2009.
  16. ^ Gromadzka G, Wierzbicka DW, Przybyłkowski A, Litwin T (novembar 2020). "Effect of homeostatic iron regulator protein gene mutation on Wilson's disease clinical manifestation: original data and literature review". The International Journal of Neuroscience: 1–11. doi:10.1080/00207454.2020.1849190. PMID 33175593.
  17. ^ Porto, Graca; de Sousa, Maria (2000). Barton, James C.; Edwards, Corwin Q. (ured.). Variation of hemochromatosis prevalence and genotype in national groups. In: Hemochromatosis: Genetics, pathophysiology, diagnosis and treatment: Cambridge University Press. str. 51–62. ISBN 978-0521593809.
  18. ^ Ryan, E; O'Keane, C; Crowe, J (decembar 1998). "Hemochromatosis in Ireland and HFE". Blood Cells, Molecules & Diseases. 24 (4): 428–32. doi:10.1006/bcmd.1998.0211. PMID 9851896.
  19. ^ Acton, RT; Barton, JC; Snively, BM; McLaren, CE; Adams, PC; Harris, EL; Speechley, MR; McLaren, GD; Dawkins, FW; Leiendecker-Foster, C; Holup, JL; Balasubramanyam, A; Hemochromatosis and Iron Overload Screening Study Research Investigators (2006). "Geographic and racial/ethnic differences in HFE mutation frequencies in the Hemochromatosis and Iron Overload Screening (HEIRS) Study". Ethnicity & Disease. 16 (4): 815–21. PMID 17061732.
  20. ^ Rochette, J; Pointon, JJ; Fisher, CA; Perera, G; Arambepola, M; Arichchi, DS; De Silva, S; Vandwalle, JL; Monti, JP; Old, JM; Merryweather-Clarke, AT; Weatherall, DJ; Robson, KJ (april 1999). "Multicentric origin of hemochromatosis gene (HFE) mutations". American Journal of Human Genetics. 64 (4): 1056–62. doi:10.1086/302318. PMC 1377829. PMID 10090890.
  21. ^ Merryweather-Clarke, AT; Pointon, JJ; Shearman, JD; Robson, KJ (april 1997). "Global prevalence of putative haemochromatosis mutations". Journal of Medical Genetics. 34 (4): 275–8. doi:10.1136/jmg.34.4.275. PMC 1050911. PMID 9138148.
  22. ^ Merryweather-Clarke, AT; Pointon, JJ; Jouanolle, AM; Rochette, J; Robson, KJ (2000). "Geography of HFE C282Y and H63D mutations". Genetic Testing. 4 (2): 183–98. doi:10.1089/10906570050114902. PMID 10953959.
  23. ^ Fairbanks, Virgil F. (2000). Barton, James C.; Edwards, Corwin Q. (ured.). Hemochromatosis: population genetics. In: Hemochromatosis: Genetics, pathophysiology, diagnosis and treatment. Cambridge University Press. str. 42–50. ISBN 978-0521593809.
  24. ^ Acton, RT; Barton, JC; Snively, BM; McLaren, CE; Adams, PC; Harris, EL; Speechley, MR; McLaren, GD; Dawkins, FW; Leiendecker-Foster, C; Holup, JL; Balasubramanyam, A; Hemochromatosis and Iron Overload Screening Study Research Investigators (2000). "Geographic and racial/ethnic differences in HFE mutation frequencies in the Hemochromatosis and Iron Overload Screening (HEIRS) Study". Ethnicity & Disease. 16 (4): 815–21. PMID 17061732.
  25. ^ a b Edwards, Corwin Q.; Barton, James C. (2014). Greer, John P.; Arber, Daniel A.; Glader, Bertil; List, Alan F.; Means, Robert T., Jr.; Paraskevas, Frixos; Rodgers, George M. (ured.). Hemochromatosis. In: Wintrobe's Clinical Hematology. Wolters Kluwer/Lippincott Williams & Wilkins. str. 662–681. ISBN 9781451172683.
  26. ^ Feder JN, Penny DM, Irrinki A, Lee VK, Lebrón JA, Watson N, Tsuchihashi Z, Sigal E, Bjorkman PJ, Schatzman RC (februar 1998). "The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding". Proceedings of the National Academy of Sciences of the United States of America. 95 (4): 1472–7. Bibcode:1998PNAS...95.1472F. doi:10.1073/pnas.95.4.1472. PMC 19050. PMID 9465039.
  27. ^ West AP, Bennett MJ, Sellers VM, Andrews NC, Enns CA, Bjorkman PJ (decembar 2000). "Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE". The Journal of Biological Chemistry. 275 (49): 38135–8. doi:10.1074/jbc.C000664200. PMID 11027676.
  28. ^ Nemeth E, Ganz T (2006). "Regulation of iron metabolism by hepcidin". Annual Review of Nutrition. 26: 323–342. doi:10.1146/annurev.nutr.26.061505.111303. PMID 16848710.
  29. ^ a b Zhou, XY; Tomatsu, S; Fleming, RE; Parkkila, S; Waheed, A; Jiang, J; Fei, Y; Brunt, EM; Ruddy, DA; Prass, CE; Schatzman, RC; O'Neill, R; Britton, RS; Bacon, BR; Sly, WS (3. 3. 1998). "HFE gene knockout produces mouse model of hereditary hemochromatosis". Proceedings of the National Academy of Sciences of the United States of America. 95 (5): 2492–7. Bibcode:1998PNAS...95.2492Z. doi:10.1073/pnas.95.5.2492. PMC 19387. PMID 9482913.
  30. ^ Bahram, S; Gilfillan, S; Kühn, LC; Moret, R; Schulze, JB; Lebeau, A; Schümann, K (9. 11. 1999). "Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism". Proceedings of the National Academy of Sciences of the United States of America. 96 (23): 13312–7. Bibcode:1999PNAS...9613312B. doi:10.1073/pnas.96.23.13312. PMC 23944. PMID 10557317.
  31. ^ Levy, JE; Montross, LK; Cohen, DE; Fleming, MD; Andrews, NC (1. 7. 1999). "The C282Y mutation causing hereditary hemochromatosis does not produce a null allele". Blood. 94 (1): 9–11. doi:10.1182/blood.V94.1.9.413a43_9_11. PMID 10381492.
  32. ^ Beutler, E; West, C; Speir, JA; Wilson, IA; Worley, M (2001). "The hHFE gene of browsing and grazing rhinoceroses: a possible site of adaptation to a low-iron diet". Blood Cells, Molecules & Diseases. 27 (1): 342–50. doi:10.1006/bcmd.2001.0386. PMID 11358396.

Dopunska literatura

uredi

Vanjski linkovi

uredi

Šablon:Metabolizam gvožđa