Površinska normala
Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen izvorima (literatura, veb-sajtovi ili drugi izvori). |
Površinska normala, ili jednostavno normala, na ravnu površinu je vektor koji je okomit na tu površinu. Normala na neravnu površinu u tački P je površini je vektor okomit na tangentnu ravan te površine u tački P. Riječ "normala" se koristi i kao pridjev: linija normalna na ravan, normalna komponenta sile, normalni vektor, i td. Koncept normalnosti uopćuje se u ortogonalnosti.
Izračunavanje površinske normale
urediZa poligon (kao što je trougao), površinska normala može se izračunati kao vektorski proizvod dvije (neparalelne) ivice poligona.
Za ravan datu jednačinom , vektor je normala. Za ravan datu jednačinom r = a + αb + βc, gdje je a vektor kojim se dolazi do ravni, a b i c su neparalelni vektori koji leže u ravni, normala na ravan definisana je sa b × c (vektorski proizvod vektora koji leže u ravni).
Ako je (po mogućnosti neravna) površina S parametrizovana sa sistemom krivolinijskih koordinata x(s, t), sa s i t kao realnim varijablama, tada je normala data sa vektorskim proizvodom parcijalnih derivacija
Ako je površina S data implicitno, kao skup tačaka koje zadovoljavaju , tada je normala u tački na površini data sa gradijentom
Ako površina nema tangentnu ravan u tački, one nema ni normalu u toj tački. Na primjer, konus nema normalu na svome vrhu, niti ima normaluduž ivice svoje baze. Međutim, normala na konus definisana je skoro svuda. Općenito, moguće je definisati normalu skoro svuda za površine koje su neprekidne po Lipschitzu.
Jedinstvenost normale
urediNormala na površinu nema jedinstven smijer; vektor koji pokazuje u suprotnom smijeru od površinske normale je, također, površinska normala. Za površinu koja je topološka granica skupa u tri dimenzije, mogu se razlikovati unutrašnja normala i vanjska normala, što može pomoći u definisanju normale na jedinstven način. Za orijentisanu površinu, površinska normala se obično određuje preko pravila desne ruke. Ako je normala napravljena kao vektorski proizvod tangentnih vektora (kao što je opisano u tekstu iznad), ona predstavlja pseudovektor.
Reference
urediVanjski linkovi
uredi- An explanation of normal vectors from Microsoft's MSDN
- Some instructional videos and a free tool for performing normals-based relighting.