RAC1

(Preusmjereno sa P21-Rac1)

Rac1, poznat i kao Ras-srodni C3 supstrat botulinum toksina 1, je protein koji se nalazi u ljudskim ćelijama. Kodiran je genom RAC1.[5][6] Ovaj gen može proizvesti razne alternativna prerade verzija proteina Rac1, za koje se čini da imaju različite funkcije.[7]

RAC1
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

1E96, 1FOE, 1G4U, 1HE1, 1HH4, 1I4D, 1I4L, 1I4T, 1MH1, 1RYF, 1RYH, 2FJU, 2H7V, 2NZ8, 2P2L, 2RMK, 2VRW, 2WKP, 2WKQ, 2WKR, 2YIN, 3B13, 3BJI, 3RYT, 3SBD, 3SBE, 3SU8, 3SUA, 3TH5, 4GZL, 4GZM, 4YON, 5FI0

Identifikatori
AliasiRAC1
Vanjski ID-jeviOMIM: 602048 MGI: 97845 HomoloGene: 69035 GeneCards: RAC1
Lokacija gena (čovjek)
Hromosom 7 (čovjek)
Hrom.Hromosom 7 (čovjek)[1]
Hromosom 7 (čovjek)
Genomska lokacija za RAC1
Genomska lokacija za RAC1
Bend7p22.1Početak6,374,527 bp[1]
Kraj6,403,967 bp[1]
Lokacija gena (miš)
Hromosom 5 (miš)
Hrom.Hromosom 5 (miš)[2]
Hromosom 5 (miš)
Genomska lokacija za RAC1
Genomska lokacija za RAC1
Bend5 G2|5 82.22 cMPočetak143,489,389 bp[2]
Kraj143,513,791 bp[2]
Obrazac RNK ekspresije


Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija histone deacetylase binding
Rho GDP-dissociation inhibitor binding
GTP-dependent protein binding
GO:0006184 GTPase activity
vezivanje enzima
GO:0001948, GO:0016582 vezivanje za proteine
thioesterase binding
protein kinase binding
nucleotide binding
GTP binding
protein serine/threonine kinase activity
GO:0032403 protein-containing complex binding
phosphatidylinositol-4,5-bisphosphate 3-kinase activity
ATPase binding
Ćelijska komponenta citoplazma
citosol
membrana
focal adhesion
Melanosom
ruffle membrane
trans-Golđijeva mreža
jedro
projekcija ćelije
extrinsic component of plasma membrane
Egzosom
lamellipodium
early endosome membrane
ćelijska membrana
Mikronit
cytoplasmic ribonucleoprotein granule
endoplasmic reticulum membrane
Golđijeva membrana
phagocytic cup
GO:0016023 citoplazmatska vezikula
GO:0005578 Vanćelijski matriks
secretory granule membrane
dendritična kičma
recycling endosome membrane
postsynapse
glutamatergic synapse
ficolin-1-rich granule membrane
Biološki proces positive regulation of Rho protein signal transduction
regulation of respiratory burst
non-canonical Wnt signaling pathway
positive regulation of protein phosphorylation
positive regulation of actin filament polymerization
regulation of neuron maturation
negative regulation of receptor-mediated endocytosis
platelet activation
Fc-epsilon receptor signaling pathway
cellular response to mechanical stimulus
phagocytosis, engulfment
vascular endothelial growth factor receptor signaling pathway
substrate adhesion-dependent cell spreading
Ćelijska proliferacija
ruffle assembly
lamellipodium assembly
dopaminergic neuron differentiation
cell-cell junction organization
Fc-gamma receptor signaling pathway involved in phagocytosis
ruffle organization
actin filament organization
cell motility
anatomical structure morphogenesis
bone resorption
response to wounding
protein localization to plasma membrane
inflammatory response
regulation of small GTPase mediated signal transduction
positive regulation of cell-substrate adhesion
G protein-coupled receptor signaling pathway
neuron projection morphogenesis
epithelial cell morphogenesis
dendrite morphogenesis
regulation of hydrogen peroxide metabolic process
engulfment of apoptotic cell
dendrite development
auditory receptor cell morphogenesis
hyperosmotic response
cerebral cortex GABAergic interneuron development
Hemotaksija
positive regulation of DNA replication
actin filament polymerization
Ćelijska adhezija
negative regulation of interleukin-23 production
homeostasis of number of cells within a tissue
cell-matrix adhesion
localization within membrane
actin cytoskeleton organization
regulation of cell size
anatomical structure arrangement
GO:0007243 intracellular signal transduction
regulation of cell migration
Endocitoza
ephrin receptor signaling pathway
T cell costimulation
Koagulacija (krv)
GO:0019049, GO:0030683 mitigation of host defenses by virus
synaptic transmission, GABAergic
mast cell chemotaxis
positive regulation of phosphatidylinositol 3-kinase activity
positive regulation of substrate adhesion-dependent cell spreading
embryonic olfactory bulb interneuron precursor migration
cytoskeleton organization
cochlea morphogenesis
positive regulation of neutrophil chemotaxis
positive regulation of apoptotic process
regulation of cell morphogenesis
positive regulation of focal adhesion assembly
regulation of fibroblast migration
positive regulation of lamellipodium assembly
cerebral cortex radially oriented cell migration
Ćelijska migracija
semaphorin-plexin signaling pathway
positive regulation of stress fiber assembly
axon guidance
small GTPase mediated signal transduction
GO:0032320, GO:0032321, GO:0032855, GO:0043089, GO:0032854 positive regulation of GTPase activity
Wnt signaling pathway, planar cell polarity pathway
midbrain dopaminergic neuron differentiation
neuron migration
protein phosphorylation
Rho protein signal transduction
regulation of lamellipodium assembly
Rac protein signal transduction
cell projection assembly
positive regulation of microtubule polymerization
neutrophil degranulation
regulation of nitric oxide biosynthetic process
phosphatidylinositol phosphate biosynthetic process
hepatocyte growth factor receptor signaling pathway
regulation of stress fiber assembly
positive regulation of protein kinase B signaling
motor neuron axon guidance
regulation of neutrophil migration
positive regulation of insulin secretion involved in cellular response to glucose stimulus
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_198829
NM_006908
NM_018890

NM_009007
NM_001347530

RefSeq (bjelančevina)

NP_008839
NP_061485

NP_001334459
NP_033033

Lokacija (UCSC)Chr 7: 6.37 – 6.4 MbChr 5: 143.49 – 143.51 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Funkcija

uredi

Rac1 je mal (~ 21 kDa) signalizirajući G protein (tačnije GTPaza) i član je potporodice Rac porodice porodice Rho GTPaza. Članovi ove superporodice reguliraju raznolik niz ćelijskih događaja, uključujući kontrolu GLUT4,[8][9] translokaciju do unosa glukoze, rast ćelija, reorganizaciju citoskeleta, antimikrobnu citotoksičnost,[10] i aktivaciju protein kinaza.[11]

Rac1 je plejotropni regulator mnogih ćelijskih procesa, uključujući ćelijski ciklus, adheziju ćelijskih ćelija, pokretljivost (kroz aktinsku mrežu) i epitelnu diferencijaciju (predloženo da je neophodan za održavanje epidermnih matičnih ćelija).

Uloga u kanceru

uredi

Zajedno s drugom potporodicama, Rac i Rho proteina, imaj važnu regulatornu ulogu, posebno u pokretljivosti i rastu ćelija. Rac1 ima sveprisutnu tkivnu ekspresiju i podstiče pokretljivost ćelija stvaranjem lamelipodija.[12] Da bi ćlije raka mogle rasti i napadati lokalna i udaljena tkiva, deregulacija pokretljivosti ćelija jedan je od glavnih događaja u invaziji i [metastaza|[metastaziranju]] ćelija karcinoma.[13] Prekomjerna ekspresija konstitucijski aktivnog Rac1 V12 kod miševa uzrokovala je tumor koji se fenotipski ne razlikuje od ljudsog Kaposijevog sarkoma.[14] Pokazalo se da aktivacijske ili dobitne funkcije mutacije Rac1 imaju aktivnu ulogu u promociji mezenhimskog tipa kretanja ćelija, potpomognutog proteinskim kompleksima NEDD9 i DOCK3.[15] Takva abnormalna pokretljivost ćelija može rezultirati tranzicijom epitelnog mezenhima (EMT) – pokretačkim mehanizmom za metastaziranje tumora, kao i relapse tumora rezistentnog na lijekove.[16][17]

Uloga u transportu glukoze

uredi

Rac1 se ispoljava u značajnim količinama u tkivima osjetljivim na insulin, kau što su masno tkivo i skeletni mišići. Ovdje Rac1 regulira translokaciju prijenosnika glukoze GLUT4 iz unutarćelijskih odjeljaka u plazmamembranu.[9][18][19] U odgovoru na insulin, ovo omogućava ulazak glukoze u krv u ćeliji, radi smanjenja glukoze u krvi. U uvjetima gojaznosti i dijabetesa tipa 2, signalizacija Rac1 u skeletnim mišićima je disfunkcionalna, što sugerira da Rac1 doprinosi napredovanju bolesti.

Protein Rac1 je također neophodan za unos glukoze u skeletne mišiće aktivirane vježbanjem[8][20] i istezanjem.[21]

Klinički značaj

uredi

Aktivirajuće mutacije u Rac1 nedavno su otkrivene u velikim genomskim studijama koje uključuju melanom[22][23][24] i plućni karcinom malih ćelija.[25] Kao rezultat toga, Rac1 se smatra terapijskom metom za mnoge od ovih bolesti.[26]

Nekoliko nedavnih studija također je koristilo ciljanu terapiju za suzbijanje rasta tumora, farmakoinhibicijom aktivnosti Rac1 u metastatskom melanomu i karcinomu jetre, kao i u ljudskom [[Rak dojke|karcinomu dojke.[27][28][29]

Naprimjer, inhibicija puta ovisnog o Rac1 rezultirala je preokretom fenotipa tumorskih ćelija, što sugerira Rac1 kao prediktivni marker i terapijski cilj za rak dojke otporan na trastuzumab. Međutim, s obzirom na ulogu Rac1 u transportu glukoze , lijekovi koji inhibiraju Rac1 mogli bi biti štetni za homeostazu glukoze.

Dominantno negativan ili konstitutivno aktivno, klicne linije mutacije RAC1 uzrokuju različite fenotipove, koji su grupirani kao mentalna retardacija Tip 48.[30] Većina mutacija uzrokuje mikrocefaliju, dok neke specifične promjene rezultiraju makrocefalijom.

Interakcije

uredi

Pokazalo se da RAC1 ima interakcije sa:

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000136238 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000001847 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (Oct 1989). "rac, a novel ras-related family of proteins that are botulinum toxin substrates". The Journal of Biological Chemistry. 264 (28): 16378–82. PMID 2674130.
  6. ^ Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E (Nov 1999). "Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors". Oncogene. 18 (48): 6835–9. doi:10.1038/sj.onc.1203233. PMID 10597294.
  7. ^ Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, Kossenkov AV, Showe LC, Liu Q, Vachani A, Albelda SM, Kissil JL (Feb 2013). "The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis". Oncogene. 32 (7): 903–9. doi:10.1038/onc.2012.99. PMC 3384754. PMID 22430205.
  8. ^ a b Sylow, Lykke; Nielsen, Ida L.; Kleinert, Maximilian; Møller, Lisbeth L. V.; Ploug, Thorkil; Schjerling, Peter; Bilan, Philip J.; Klip, Amira; Jensen, Thomas E. (9. 4. 2016). "Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice". The Journal of Physiology. 594 (17): 4997–5008. doi:10.1113/JP272039. ISSN 1469-7793. PMC 5009787. PMID 27061726.
  9. ^ a b Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T (Jul 2010). "Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma". FASEB Journal. 24 (7): 2254–61. doi:10.1096/fj.09-137380. PMC 4183928. PMID 20203090.
  10. ^ Xiang RF (Mar 2016). "Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans". J Biol Chem. 291 (13): 6912–22. doi:10.1074/jbc.M115.681544. PMC 4807276. PMID 26867574.
  11. ^ Ridley AJ (Oct 2006). "Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking". Trends in Cell Biology. 16 (10): 522–9. doi:10.1016/j.tcb.2006.08.006. PMID 16949823.
  12. ^ Parri M, Chiarugi P (2010). "Rac and Rho GTPases in cancer cell motility control". Cell Communication and Signaling. 8 (23): 23. doi:10.1186/1478-811x-8-23. PMC 2941746. PMID 20822528.
  13. ^ Hanahan D, Weinberg RA (Mar 2011). "Hallmarks of cancer: the next generation". Cell. 144 (5): 646–74. doi:10.1016/j.cell.2011.02.013. PMID 21376230.
  14. ^ Ma, Qi; Cavallin, Lucas E.; Yan, Bin; Zhu, Shoukang; Duran, Elda Margarita; Wang, Huili; Hale, Laura P.; Dong, Chunming; Cesarman, Ethel (26. 5. 2009). "Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi's sarcoma". Proceedings of the National Academy of Sciences (jezik: engleski). 106 (21): 8683–8688. doi:10.1073/pnas.0812688106. ISSN 0027-8424. PMC 2679580. PMID 19429708.
  15. ^ Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ (Oct 2008). "Rac activation and inactivation control plasticity of tumor cell movement". Cell. 135 (3): 510–23. doi:10.1016/j.cell.2008.09.043. PMID 18984162.
  16. ^ Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, et al. (Jul 11, 2012). "Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression". Science Translational Medicine. 4 (142): 510–523. doi:10.1126/scitranslmed.3004062. PMC 3733503. PMID 22786680.
  17. ^ Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, Wu KJ, Hung MC, Yang MH (Apr 2012). "RAC1 activation mediates Twist1-induced cancer cell migration". Nature Cell Biology. 14 (4): 366–74. doi:10.1038/ncb2455. PMID 22407364.
  18. ^ Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE (Feb 2014). "Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance". Cellular Signalling. 26 (2): 323–31. doi:10.1016/j.cellsig.2013.11.007. PMID 24216610.
  19. ^ Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA (Jun 2013). "Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle". Diabetes. 62 (6): 1865–75. doi:10.2337/db12-1148. PMC 3661612. PMID 23423567.
  20. ^ Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, Prats C, Chiu TT, Boguslavsky S, Klip A, Schjerling P, Richter EA (Apr 2013). "Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle". Diabetes. 62 (4): 1139–51. doi:10.2337/db12-0491. PMC 3609592. PMID 23274900.
  21. ^ Sylow L, Møller LL, Kleinert M, Richter EA, Jensen TE (Feb 2015). "Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1". The Journal of Physiology. 593 (3): 645–56. doi:10.1113/jphysiol.2014.284281. PMC 4324711. PMID 25416624.
  22. ^ Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (Jul 2012). "A landscape of driver mutations in melanoma". Cell. 150 (2): 251–63. doi:10.1016/j.cell.2012.06.024. PMC 3600117. PMID 22817889.
  23. ^ Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (Sep 2012). "Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma". Nature Genetics. 44 (9): 1006–14. doi:10.1038/ng.2359. PMC 3432702. PMID 22842228.
  24. ^ Bauer NN, Chen YW, Samant RS, Shevde LA, Fodstad O (Nov 2007). "Rac1 activity regulates proliferation of aggressive metastatic melanoma". Experimental Cell Research. 313 (18): 3832–9. doi:10.1016/j.yexcr.2007.08.017. PMID 17904119.
  25. ^ Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP, Radisky DC (Jul 2012). "Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression". Science Translational Medicine. 4 (142): 142ra95. doi:10.1126/scitranslmed.3004062. PMC 3733503. PMID 22786680.
  26. ^ McAllister SS (Jul 2012). "Got a light? Illuminating lung cancer". Science Translational Medicine. 4 (142): 142fs22. doi:10.1126/scitranslmed.3004446. PMID 22786678.
  27. ^ Chen QY, Xu LQ, Jiao DM, Yao QH, Wang YY, Hu HZ, et al. (Nov 2011). "Silencing of Rac1 modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs". International Journal of Molecular Medicine. 28 (5): 769–776. doi:10.3892/ijmm.2011.775. PMID 21837360.
  28. ^ Dokmanovic M, Hirsch DS, Shen Y, Wu WJ (Jun 2009). "Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer". Molecular Cancer Therapeutics. 8 (6): 1557–69. doi:10.1158/1535-7163.mct-09-0140. PMID 19509242.
  29. ^ Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z (Jun 2008). "Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway". Hepatology. 47 (6): 1964–73. doi:10.1002/hep.22240. PMID 18506888.
  30. ^ Reijnders, Margot R.F.; Ansor, Nurhuda M.; Kousi, Maria; Yue, Wyatt W.; Tan, Perciliz L.; Clarkson, Katie; Clayton-Smith, Jill; Corning, Ken; Jones, Julie R.; Lam, Wayne W.K.; Mancini, Grazia M.S.; Marcelis, Carlo; Mohammed, Shehla; Pfundt, Rolph; Roifman, Maian; Cohn, Ronald; Chitayat, David; Millard, Tom H.; Katsanis, Nicholas; Brunner, Han G.; Banka, Siddharth (septembar 2017). "RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes". The American Journal of Human Genetics. 101 (3): 466–477. doi:10.1016/j.ajhg.2017.08.007. PMC 5591022. PMID 28886345.
  31. ^ a b Shin OH, Exton JH (Aug 2001). "Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1". Biochemical and Biophysical Research Communications. 285 (5): 1267–73. doi:10.1006/bbrc.2001.5330. PMID 11478794.
  32. ^ Van Aelst L, Joneson T, Bar-Sagi D (Aug 1996). "Identification of a novel Rac1-interacting protein involved in membrane ruffling". The EMBO Journal. 15 (15): 3778–86. doi:10.1002/j.1460-2075.1996.tb00751.x. PMC 452058. PMID 8670882.
  33. ^ Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ (maj 2001). "The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways". Nature. 411 (6834): 215–9. doi:10.1038/35075620. PMID 11346801.
  34. ^ Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
  35. ^ Grizot S, Fauré J, Fieschi F, Vignais PV, Dagher MC, Pebay-Peyroula E (Aug 2001). "Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation". Biochemistry. 40 (34): 10007–13. doi:10.1021/bi010288k. PMID 11513578.
  36. ^ Lian LY, Barsukov I, Golovanov AP, Hawkins DI, Badii R, Sze KH, Keep NH, Bokoch GM, Roberts GC (Jan 2000). "Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1". Structure. 8 (1): 47–55. doi:10.1016/S0969-2126(00)00080-0. PMID 10673424.
  37. ^ Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P (Jan 1998). "Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity". FEBS Letters. 422 (2): 269–73. doi:10.1016/S0014-5793(98)00020-9. PMID 9490022.
  38. ^ Di-Poï N, Fauré J, Grizot S, Molnár G, Pick E, Dagher MC (Aug 2001). "Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex". Biochemistry. 40 (34): 10014–22. doi:10.1021/bi010289c. PMID 11513579.
  39. ^ Fauré J, Dagher MC (maj 2001). "Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI)". Biochimie. 83 (5): 409–14. doi:10.1016/S0300-9084(01)01263-9. PMID 11368848.
  40. ^ Miki H, Yamaguchi H, Suetsugu S, Takenawa T (Dec 2000). "IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling". Nature. 408 (6813): 732–5. doi:10.1038/35047107. PMID 11130076.
  41. ^ Westendorf JJ (Dec 2001). "The formin/diaphanous-related protein, FHOS, interacts with Rac1 and activates transcription from the serum response element". The Journal of Biological Chemistry. 276 (49): 46453–9. doi:10.1074/jbc.M105162200. PMID 11590143.
  42. ^ Yayoshi-Yamamoto S, Taniuchi I, Watanabe T (Sep 2000). "FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages". Molecular and Cellular Biology. 20 (18): 6872–81. doi:10.1128/MCB.20.18.6872-6881.2000. PMC 86228. PMID 10958683.
  43. ^ a b Zhang B, Chernoff J, Zheng Y (Apr 1998). "Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA". The Journal of Biological Chemistry. 273 (15): 8776–82. doi:10.1074/jbc.273.15.8776. PMID 9535855.
  44. ^ Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (Sep 1996). "Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1". The Journal of Biological Chemistry. 271 (38): 23363–7. doi:10.1074/jbc.271.38.23363. PMID 8798539.
  45. ^ Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (Jun 2002). "Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170". Cell. 109 (7): 873–85. doi:10.1016/S0092-8674(02)00800-0. PMID 12110184.
  46. ^ Hart MJ, Callow MG, Souza B, Polakis P (Jun 1996). "IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs". The EMBO Journal. 15 (12): 2997–3005. doi:10.1002/j.1460-2075.1996.tb00663.x. PMC 450241. PMID 8670801.
  47. ^ Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ (Sep 1996). "The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases". Molecular and Cellular Biology. 16 (9): 4869–78. doi:10.1128/mcb.16.9.4869. PMC 231489. PMID 8756646.
  48. ^ Jefferies C, Bowie A, Brady G, Cooke EL, Li X, O'Neill LA (Jul 2001). "Transactivation by the p65 subunit of NF-kappaB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1" (PDF). Molecular and Cellular Biology. 21 (14): 4544–52. doi:10.1128/MCB.21.14.4544-4552.2001. PMC 87113. PMID 11416133.
  49. ^ Shimizu M, Wang W, Walch ET, Dunne PW, Epstein HF (Jun 2000). "Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase". FEBS Letters. 475 (3): 273–7. doi:10.1016/S0014-5793(00)01692-6. PMID 10869570.
  50. ^ Kitamura Y, Kitamura T, Sakaue H, Maeda T, Ueno H, Nishio S, Ohno S, Osada S, Sakaue M, Ogawa W, Kasuga M (Mar 1997). "Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac". The Biochemical Journal. 322 (3): 873–8. doi:10.1042/bj3220873. PMC 1218269. PMID 9148763.
  51. ^ Katoh H, Negishi M (Jul 2003). "RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo". Nature. 424 (6947): 461–4. doi:10.1038/nature01817. PMID 12879077.
  52. ^ Seoh ML, Ng CH, Yong J, Lim L, Leung T (Mar 2003). "ArhGAP15, a novel human RacGAP protein with GTPase binding property". FEBS Letters. 539 (1–3): 131–7. doi:10.1016/S0014-5793(03)00213-8. PMID 12650940.
  53. ^ a b Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (Feb 2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C". Genes to Cells. 6 (2): 107–19. doi:10.1046/j.1365-2443.2001.00404.x. PMID 11260256.
  54. ^ Qiu RG, Abo A, Steven Martin G (Jun 2000). "A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation". Current Biology. 10 (12): 697–707. doi:10.1016/S0960-9822(00)00535-2. PMID 10873802.
  55. ^ Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (Sep 2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". The Journal of Biological Chemistry. 278 (36): 34641–53. doi:10.1074/jbc.M304594200. PMID 12819203.
  56. ^ Moon SY, Zang H, Zheng Y (Feb 2003). "Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP". The Journal of Biological Chemistry. 278 (6): 4151–9. doi:10.1074/jbc.M207789200. PMID 12454018.
  57. ^ Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH, Guan KL (Oct 2000). "Regulation of STAT3 by direct binding to the Rac1 GTPase". Science. 290 (5489): 144–7. doi:10.1126/science.290.5489.144. PMID 11021801.
  58. ^ Worthylake DK, Rossman KL, Sondek J (Dec 2000). "Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1". Nature. 408 (6813): 682–8. doi:10.1038/35047014. PMID 11130063.
  59. ^ Gao Y, Xing J, Streuli M, Leto TL, Zheng Y (Dec 2001). "Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors". The Journal of Biological Chemistry. 276 (50): 47530–41. doi:10.1074/jbc.M108865200. PMID 11595749.

Dopunska literatura

uredi

Vanjski linkovi

uredi

Šablon:GTPaze