Množenje
Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen izvorima (literatura, veb-sajtovi ili drugi izvori). |
Množenje je jedna od četiri osnovne računske operacije u aritmetici. Množenje prirodnih brojeva predstavlja njihovo ponovljeno sabiranje.
-
3x4=12
i se nazivaju faktori. Rezultat, „a puta b“, se naziva proizvod.
Množenje viže uzastopnih brojeva
urediPri množenju više brojeva se koristi slovo Π iz grčkog alfabeta :
ili
Postoji i specijalni slučaj množenja prirodnih brojeva - faktorijel
- Primjeri
Odnosno imamo da je
Ponovljeno množenje istih faktora zamjenjujemo potenciranjem
Notacija
urediNpr. pišemo 3 · 4 za 4 + 4 + 4. To se čita „tri puta četiri“.
Umjesto 3 · 4 nekad se piše 3 × 4. U računarskim programima se često koristi znak *. Pri množenju varijabli možemo pisati npr. (5x, xy).
Suprotna operacija je dijeljenje.
Osobine množenja
uredi- Zakon asocijativnosti:
- Zakon komutativnosti:
- Zakon distributivnosti:
- Neutralni element:
- Inverzni element:
- Nulti element:
U skupu racionalnih, realnih i kompleksnih brojeva, svaki broj osim nule ima tačno jedan inverzan broj.
Inverzan broj broja je . Inverzan broj inverznog broja je broj
Množenje kroz skupove
urediCijeli brojevi
urediAko su u skupu cijelih brojeva faktori istog znaka proizvod je pozitivan, a ako su različitih predznaka onda je negativan.
Racionalni brojevi
urediProizvod racionalnih brojeva je racionalan broj kome je brojilac proizvod brojilaca faktora, a imenilac proizvod imenilaca faktora
Iracionalni brojevi
urediNeka je iracionalan broj, tada je proizvod granična vrednost
gdje je racionalan broj i predstavlja približnu vrednost broja . kompleksan broj
Kompleksni brojevi
urediKompleksan broj možemo zapisati kao uređeni par ili u trigonometrijskom obliku:
Zbog je
.
Množenje vektora
uredi(Vektor množimo skalarom tako što se svaka njegova koordinata pomnoži skalarom. Ova operacija je komutativna)
(Skalarni proizvod vektora je skalar jednak zbiru proizvoda odgovarajućih koordinata)
- gdje su , i jedinični vektori duž x, y i z ose
(Vektorski proizvod vektora je novi vektor, čiji je intenzitet jednak površini paralograma koji vektori-faktori zaklapaju, pravac mu je normalan na ravan koju vektori-faktori definišu, a smjer se definiše pravilom lijeve ili desne ruke, zavisno od konvencije. Ovaj proizvod je specifičan za , i antikomutativan je. Vektorski proizvod se računa kao determinanta matrice.)
(Mješoviti proizvod tri vektora je skalar koji je jednak zapremini paralelopipeda koji ti vektori zaklapaju. Zapisuje se kao )
Množenje matrica
urediNeka su date matrice A i B veličine mA×nA i mB×nB. Proizvod AB je definisan ako je nA = mB, a dobijena matrica ima dimenzije mA×nB. Elementi matrice-proizvoda su
Množenje matrica nije komutativno. Matrice 1×3 i 3×2 možemo pomnožiti samo na jedan način, a 5×4 i 4×5 sa obe strane, ali proizvodi neće imati istu veličinu (5×5 na jedan i 4×4 na drugi način). Ako se pomnože dve kvadratne matrice iste veličine, proizvodi su takođe iste veličine, i može se definisati komutator
Također pogledajte
urediReference
uredi