Kalijski kanal

Kalijski kanali su najrasprostranjeniji tip ionskoh kanala i nalaze se u gotovo svim živim organizmima.[1] Formiraju kalij-selektivne pore koje pokrivaju ćelijske membrane. Kalijski kanali se nalaze u većini tipova ćelija i kontrolišu širok spektar ćelijskih funkcija.[2][3]

Kalijski kanal Kv1.2, struktura u okruženju nalik na membranu. Izračunate granice ugljovodonika lipidnog dvosloja označene su crvenim i plavim linijama.

FunkcijaUredi

Kalijski kanali funkcionišu tako da provode kalijeve ione niz njihov elektrohemijski gradijent, čineći to i brzo (do brzina difuzije K+ iona u vodi) i selektivno (isključujući, posebno, natrij uprkos subangstromskoj razlici u ionskom radijusu).[4] Biološki, ovi kanali djeluju tako da postave ili resetuju potencijal mirovanja u mnogim ćelijama. U ekscitabilnim ćelijama, kao što su neuroni, odloženi protivtok kalijevih iona oblikuje akcijski potencijal.

Doprinoseći regulaciji trajanja srčanog akcijskog potencijala u srčanom mišiću, kvar kalijevih kanala može uzrokovati po život opasne aritmije. Kalijski kanali mogu takođet biti uključeni u održavanje vaskularnog tonusa.

Oni također regulišu ćelijske procese kao što je lučenje hormona (npr., oslobađanje insulina iz beta-ćelija u gušterači) tako da njihov kvar može dovesti do bolesti (kao što je dijabetes).

Neki toksini, kao što je dendrotoksin, su moćni jer blokiraju kalijeve kanale.[5]

TipoviUredi

Postoje četiri glavne klase kalijevih kanala:

Sljedeća tabela sadrži poređenje glavnih klasa kalijevih kanala sa reprezentativnim primerima (za kompletnu listu kanala unutar svake klase, pogledajte stranice odgovarajućih klasa).

Za više primjera farmakoloških modulatora kalijumskih kanala, pogledajte blokator kalijskih kanala i otvarač kalijskih kanala.

Funkcija i farmakologija klasa kalijevih kanala,.[6]
Klasa Potklasa Funkcija Blokatori Aktivatori
Kalcij aktivirani
6T i 1P|
  • Inhibicija kao odgovor na porast unutarćelijskog kalcija
Unutrašnji ispravljač
2T i 1P
  • Posreduju u inhibicijskom efektu mnogih GPCR-ova
*Ifenprodil[16]
  • Zatvororen kada je ATP visok da bi se podstaklo lučenje insulina
Domen tandemskih pora
4T i 2P|
Naponski-regulirani
6T i 1P|

StrukturaUredi

 
Pogled odozgo na kalijev kanal sa ionima kalija (ljubičasti) koji se kreću kroz pore (u centru). (1BL8)

Kalijski kanali imaju tetramernu strukturu u kojoj se četiri identične proteinske podjedinice povezuju da formiraju četvorostruki simetrična (C4) kompleks raspoređen oko centralne pore koji provode ione (tj. homotetramera). Alternativno, četiri srodne, ali ne identične proteinske podjedinice mogu se povezati da formiraju heterotetramerne komplekse sa pseudo simetrijom C4. Sve podjedinice kalijevog kanala imaju karakterističnu strukturu pore-petlje koja oblaže vrh pora i odgovorna je za selektivnu propusnost kalija.

Postoji preko 80 sisarskih gena koji kodiraju podjedinice kalijevih kanala. Međutim, kalijevi kanali pronađeni u bakterijama su među najistraženijim onskim kanalima, u smislu njihove molekulske strukture. Koristeći kristalografiju X-zraka,[50][51] stečeni su duboki uvidi u to kako kalijevi ioni prolaze kroz ove kanale i zašto (manji) natrijevi ioni ne prolaze.[52] Nobelova nagrada za hemiju 2003. godine dodijeljena je Rodu MacKinnonu za njegov pionirski rad u ovoj oblasti.[53]

Filter selectivnostiUredi

 
Kristalografska struktura bakterijskog KcsA-kalijevog kanala (1K4C).[54] Na ovoj slici su samo dvije od četiri podjedinice tetramera prikazane radi jasnoće. Protein je prikazan kao zeleni crtani dijagram. Dodatno su prikazane karbonilne grupe okosnice i proteinski atomi bočnog lanca treonina (kisik = crveno, ugljik = zeleno). Konačno, ioni kalija (koji zauzimaju mjesta S2 i S4) i atomi kisika molekule vode (S1 i S3) prikazani su kao ljubičaste, odnosno crvene sfere.

Kalijevi ionski kanali uklanjaju hidratantnu ljusku sa iona kada uđe u filter selektivnosti. Filter selektivnosti je formiran od sekvence od pet ostataka, TVGYG, koja se naziva signaturna sekvenca, unutar svake od četiri podjedinice. Ova signaturna sekvenca je unutar petlje između heliksa pora i TM2/6, historijski zvane P-petlja. Ova signaturna sekvenca je visoko konzervirana, s izuzetkom da se valinski ostatak u prokariotskim kalijevim kanalima često zamjenjuje ostatkom izoleucina u eukariotskim kanalima. Ova sekvenca ima jedinstvenu strukturu glavnog lanca, strukturno analognu strukturnom motiv proteina gnijezda. Četiri seta elektronegativnih karbonilnih atoma kisika poredani su prema centru filterskih pora i formiraju kvadratnu anti-prizmu, sličnu ljusci koja rastvara vodu oko svakog mjesta vezanja kalija. Udaljenost između karbonilnog kisika i kalijevih iona na veznim mjestima filtera selektivnosti je ista kao između kiseika u vodi, u prvoj hidratacijskoj ljusci i iona kalija u vodenom rastvoru, pružajući energetski povoljan put za desolvataciju iona. Ioni natrija su, međutim, premali da popune prostor između karbonilnih atoma kisika. Dakle, energetski je povoljno da natrijevi ioni ostanu vezani za molekule vode u vanćelijskom prostoru, umjesto da prođu kroz kalij-selektivne ionske pore.[55] Čini se da se ova širina održava vodikovim vezom i van der Waalsovim silama unutar lista ostataka aromatsnih aminokiselina koji okružuju filter selektivnosti.[50][56] Filter selektivnosti otvara se prema vanćelijskom rastvoru, izlažući četiri karbonilna kiseika u ostatku glicina (Gly79 u KcsA). Sljedeći ostatak prema vanćelijskoj strani proteina je negativno nabijeni Asp80 (KcsA). Ovaj ostatak zajedno sa pet filterskih ostataka formira poru koja povezuje šupljinu ispunjenu vodom u centru proteina sa vanćelijskim rastvorom.

FarmakologijaUredi

BlokatoriUredi

Blokatori kalijevih kanala inhibiraju protok iona kalija kroz kanal. Oni se ili natječu s vezivanjem kalija unutar filtera selektivnosti ili se vezuju izvan filtera, kako bi okludirali provodljivost iona. Primjer jednog od ovih konkurenata su kvaternarni amonijevi ioni, koji se vežu na vanćelijskojoj površini [57][58] ili na centralnoj šupljini kanala.[59] For blocking from the central cavity quaternary ammonium ions are also known as open channel blockers, as binding classically requires the prior opening of the cytoplasmic gate.[60]

Ioni barija također mogu blokirati struje kalijevih kanala,[61][62] vezivanjem sa visokim afinitetom unutar filtera selektivnosti.[63][64][65][66] Smatra se da ovo čvrsto vezivanje leži u osnovi toksičnost barija tako što inhibira aktivnost kalijevih kanala u ekscitabilnim ćelijama.

Medicinski blokatori kalijevih kanala, kao što su 4-aminopiridin i 3,4-diaminopiridin, istraženi su za liječenje stanja kao što je multipla skleroza.[44] Neželjeni efekti lijekova mogu dovesti do lijeka indukovanog sindroma dugog intervala QT, potencijalno životno opasnog stanja. Ovo je najčešće zbog djelovanja na hERG kalijskog kanala u srcu. U skladu s tim, svi novi lijekovi su pretklinički testirani na srčanu sigurnost.

Također pogledajteUredi

ReferenceUredi

  1. ^ Littleton JT, Ganetzky B (april 2000). "Ion channels and synaptic organization: analysis of the Drosophila genome". Neuron. 26 (1): 35–43. doi:10.1016/S0896-6273(00)81135-6. PMID 10798390. S2CID 5694563.
  2. ^ Hille, Bertil (2001). "Chapter 5: Potassium Channels and Chloride Channels". Ion channels of excitable membranes. Sunderland, Mass: Sinauer. str. 131–168. ISBN 978-0-87893-321-1.
  3. ^ Jessell TM, Kandel ER, Schwartz JH (2000). "Chapter 6: Ion Channels". Principles of Neural Science (4th izd.). New York: McGraw-Hill. str. 105–124. ISBN 978-0-8385-7701-1.
  4. ^ Lim C, Dudev T (2016). "Chapter 10. Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters". u Astrid S, Helmut S, Roland KO S (ured.). The Alkali Metal Ions: Their Role in Life. Metal Ions in Life Sciences. 16. Springer. str. 325–347. doi:10.1007/978-3-319-21756-7_9. PMID 26860305.
  5. ^ indirectly cited from reference number 3,4,5,6 in Rehm, H.; Lazdunski, M. (1. 7. 1988). "Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I." Proceedings of the National Academy of Sciences. 85 (13): 4919–4923. Bibcode:1988PNAS...85.4919R. doi:10.1073/pnas.85.13.4919. ISSN 0027-8424. PMC 280549. PMID 2455300.
  6. ^ a b c d e f g h i Rang, HP (2015). Pharmacology (8 izd.). Edinburgh: Churchill Livingstone. str. 59. ISBN 978-0-443-07145-4.
  7. ^ Thompson J, Begenisich T (maj 2000). "Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels". Biophysical Journal. 78 (5): 2382–91. Bibcode:2000BpJ....78.2382T. doi:10.1016/S0006-3495(00)76782-8. PMC 1300827. PMID 10777734.
  8. ^ Naranjo D, Miller C (januar 1996). "A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel". Neuron. 16 (1): 123–30. doi:10.1016/S0896-6273(00)80029-X. PMID 8562075. S2CID 16794677.
  9. ^ Yu M, Liu SL, Sun PB, Pan H, Tian CL, Zhang LH (januar 2016). "Peptide toxins and small-molecule blockers of BK channels". Acta Pharmacologica Sinica. 37 (1): 56–66. doi:10.1038/aps.2015.139. PMC 4722972. PMID 26725735.
  10. ^ Candia S, Garcia ML, Latorre R (august 1992). "Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel". Biophysical Journal. 63 (2): 583–90. Bibcode:1992BpJ....63..583C. doi:10.1016/S0006-3495(92)81630-2. PMC 1262182. PMID 1384740.
  11. ^ Stocker M, Krause M, Pedarzani P (april 1999). "An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons". Proceedings of the National Academy of Sciences of the United States of America. 96 (8): 4662–7. Bibcode:1999PNAS...96.4662S. doi:10.1073/pnas.96.8.4662. PMC 16389. PMID 10200319.
  12. ^ McLeod JF, Leempoels JM, Peng SX, Dax SL, Myers LJ, Golder FJ (novembar 2014). "GAL-021, a new intravenous BKCa-channel blocker, is well tolerated and stimulates ventilation in healthy volunteers". British Journal of Anaesthesia. 113 (5): 875–83. doi:10.1093/bja/aeu182. PMID 24989775.
  13. ^ Dopico AM, Bukiya AN, Kuntamallappanavar G, Liu J (2016). "Modulation of BK Channels by Ethanol". International Review of Neurobiology. 128: 239–79. doi:10.1016/bs.irn.2016.03.019. ISBN 9780128036198. PMC 5257281. PMID 27238266.
  14. ^ a b Patnaik, Pradyot (2003). Handbook of inorganic chemicals. McGraw-Hill. str. 77–78. ISBN 978-0-07-049439-8.
  15. ^ Sackin H, Syn S, Palmer LG, Choe H, Walters DE (februar 2001). "Regulation of ROMK by extracellular cations". Biophysical Journal. 80 (2): 683–97. Bibcode:2001BpJ....80..683S. doi:10.1016/S0006-3495(01)76048-1. PMC 1301267. PMID 11159436.
  16. ^ Kobayashi T, Washiyama K, Ikeda K (mart 2006). "Inhibition of G protein-activated inwardly rectifying K+ channels by ifenprodil". Neuropsychopharmacology. 31 (3): 516–24. doi:10.1038/sj.npp.1300844. PMID 16123769.
  17. ^ Soeda F, Fujieda Y, Kinoshita M, Shirasaki T, Takahama K (maj 2016). "Centrally acting non-narcotic antitussives prevent hyperactivity in mice: Involvement of GIRK channels". Pharmacology, Biochemistry, and Behavior. 144: 26–32. doi:10.1016/j.pbb.2016.02.006. PMID 26892760. S2CID 30118634.
  18. ^ Yamamoto G, Soeda F, Shirasaki T, Takahama K (april 2011). "[Is the GIRK channel a possible target in the development of a novel therapeutic drug of urinary disturbance?]". Yakugaku Zasshi. 131 (4): 523–32. doi:10.1248/yakushi.131.523. PMID 21467791.
  19. ^ Kawaura K, Honda S, Soeda F, Shirasaki T, Takahama K (maj 2010). "[Novel antidepressant-like action of drugs possessing GIRK channel blocking action in rats]". Yakugaku Zasshi. 130 (5): 699–705. doi:10.1248/yakushi.130.699. PMID 20460867.
  20. ^ Jin W, Lu Z (septembar 1998). "A novel high-affinity inhibitor for inward-rectifier K+ channels". Biochemistry. 37 (38): 13291–9. doi:10.1021/bi981178p. PMID 9748337.
  21. ^ Kawaura K, Ogata Y, Inoue M, Honda S, Soeda F, Shirasaki T, Takahama K (decembar 2009). "The centrally acting non-narcotic antitussive tipepidine produces antidepressant-like effect in the forced swimming test in rats". Behavioural Brain Research. 205 (1): 315–8. doi:10.1016/j.bbr.2009.07.004. PMID 19616036. S2CID 29236491.
  22. ^ Kaufmann K, Romaine I, Days E, Pascual C, Malik A, Yang L, et al. (septembar 2013). "ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice". ACS Chemical Neuroscience. 4 (9): 1278–86. doi:10.1021/cn400062a. PMC 3778424. PMID 23730969.
  23. ^ Serrano-Martín X, Payares G, Mendoza-León A (decembar 2006). "Glibenclamide, a blocker of K+(ATP) channels, shows antileishmanial activity in experimental murine cutaneous leishmaniasis". Antimicrobial Agents and Chemotherapy. 50 (12): 4214–6. doi:10.1128/AAC.00617-06. PMC 1693980. PMID 17015627.
  24. ^ Lawrence CL, Proks P, Rodrigo GC, Jones P, Hayabuchi Y, Standen NB, Ashcroft FM (august 2001). "Gliclazide produces high-affinity block of KATP channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells". Diabetologia. 44 (8): 1019–25. doi:10.1007/s001250100595. PMID 11484080.
  25. ^ a b c d e f Enyedi P, Czirják G (april 2010). "Molecular background of leak K+ currents: two-pore domain potassium channels". Physiological Reviews. 90 (2): 559–605. doi:10.1152/physrev.00029.2009. PMID 20393194. S2CID 9358238.
  26. ^ a b c d e f Lotshaw DP (2007). "Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels". Cell Biochemistry and Biophysics. 47 (2): 209–56. doi:10.1007/s12013-007-0007-8. PMID 17652773. S2CID 12759521.
  27. ^ Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (juni 1998). "A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids". The EMBO Journal. 17 (12): 3297–308. doi:10.1093/emboj/17.12.3297. PMC 1170668. PMID 9628867.
  28. ^ Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (mart 2001). "Potassium leak channels and the KCNK family of two-P-domain subunits". Nature Reviews. Neuroscience. 2 (3): 175–84. doi:10.1038/35058574. PMID 11256078. S2CID 9682396.
  29. ^ Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, et al. (juli 2003). "A novel two-pore domain K+ channel, TRESK, is localized in the spinal cord". The Journal of Biological Chemistry. 278 (30): 27406–12. doi:10.1074/jbc.M206810200. PMID 12754259.
  30. ^ Czirják G, Tóth ZE, Enyedi P (april 2004). "The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin". The Journal of Biological Chemistry. 279 (18): 18550–8. doi:10.1074/jbc.M312229200. PMID 14981085.
  31. ^ Kindler CH, Yost CS, Gray AT (april 1999). "Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem". Anesthesiology. 90 (4): 1092–102. doi:10.1097/00000542-199904000-00024. PMID 10201682.
  32. ^ a b c Meadows HJ, Randall AD (mart 2001). "Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel". Neuropharmacology. 40 (4): 551–9. doi:10.1016/S0028-3908(00)00189-1. PMID 11249964. S2CID 20181576.
  33. ^ Kindler CH, Paul M, Zou H, Liu C, Winegar BD, Gray AT, Yost CS (juli 2003). "Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5)". The Journal of Pharmacology and Experimental Therapeutics. 306 (1): 84–92. doi:10.1124/jpet.103.049809. PMID 12660311. S2CID 1621972.
  34. ^ Punke MA, Licher T, Pongs O, Friederich P (juni 2003). "Inhibition of human TREK-1 channels by bupivacaine". Anesthesia and Analgesia. 96 (6): 1665–73, table of contents. doi:10.1213/01.ANE.0000062524.90936.1F. PMID 12760993. S2CID 39630495.
  35. ^ Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (mart 1996). "TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure". The EMBO Journal. 15 (5): 1004–11. doi:10.1002/j.1460-2075.1996.tb00437.x. PMC 449995. PMID 8605869.
  36. ^ Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (septembar 1997). "TASK, a human background K+ channel to sense external pH variations near physiological pH". The EMBO Journal. 16 (17): 5464–71. doi:10.1093/emboj/16.17.5464. PMC 1170177. PMID 9312005.
  37. ^ Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (novembar 1998). "Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney". The Journal of Biological Chemistry. 273 (47): 30863–9. doi:10.1074/jbc.273.47.30863. PMID 9812978.
  38. ^ Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, et al. (april 2000). "Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel". Pflügers Archiv. 439 (6): 714–22. doi:10.1007/s004240050997. PMID 10784345.
  39. ^ "UniProtKB - Q9NPC2 (KCNK9_HUMAN)". Uniprot. Pristupljeno 29. 5. 2019.
  40. ^ a b Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (mart 2005). "Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine". British Journal of Pharmacology. 144 (6): 821–9. doi:10.1038/sj.bjp.0706068. PMC 1576064. PMID 15685212.
  41. ^ Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M (maj 1999). "Inhalational anesthetics activate two-pore-domain background K+ channels". Nature Neuroscience. 2 (5): 422–6. doi:10.1038/8084. PMID 10321245. S2CID 23092576.
  42. ^ Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, et al. (juni 2000). "Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5". Anesthesiology. 92 (6): 1722–30. doi:10.1097/00000542-200006000-00032. PMID 10839924. S2CID 45487917.
  43. ^ Kirsch GE, Narahashi T (juni 1978). "3,4-diaminopyridine. A potent new potassium channel blocker". Biophysical Journal. 22 (3): 507–12. Bibcode:1978BpJ....22..507K. doi:10.1016/s0006-3495(78)85503-9. PMC 1473482. PMID 667299.
  44. ^ a b Judge SI, Bever CT (juli 2006). "Potassium channel blockers in multiple sclerosis: neuronal Kv channels and effects of symptomatic treatment". Pharmacology & Therapeutics. 111 (1): 224–59. doi:10.1016/j.pharmthera.2005.10.006. PMID 16472864.
  45. ^ Tiku PE, Nowell PT (decembar 1991). "Selective inhibition of K(+)-stimulation of Na,K-ATPase by bretylium". British Journal of Pharmacology. 104 (4): 895–900. doi:10.1111/j.1476-5381.1991.tb12523.x. PMC 1908819. PMID 1667290.
  46. ^ Hille B (maj 1967). "The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion". The Journal of General Physiology. 50 (5): 1287–302. doi:10.1085/jgp.50.5.1287. PMC 2225709. PMID 6033586.
  47. ^ Armstrong CM (oktobar 1971). "Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons". The Journal of General Physiology. 58 (4): 413–37. doi:10.1085/jgp.58.4.413. PMC 2226036. PMID 5112659.
  48. ^ "Amiodarone". Drugbank. Pristupljeno 28. 5. 2019.
  49. ^ Rogawski MA, Bazil CW (juli 2008). "New molecular targets for antiepileptic drugs: alpha(2)delta, SV2A, and K(v)7/KCNQ/M potassium channels". Current Neurology and Neuroscience Reports. 8 (4): 345–52. doi:10.1007/s11910-008-0053-7. PMC 2587091. PMID 18590620.
  50. ^ a b Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. (april 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity". Science. 280 (5360): 69–77. Bibcode:1998Sci...280...69D. doi:10.1126/science.280.5360.69. PMID 9525859.
  51. ^ MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (april 1998). "Structural conservation in prokaryotic and eukaryotic potassium channels". Science. 280 (5360): 106–9. Bibcode:1998Sci...280..106M. doi:10.1126/science.280.5360.106. PMID 9525854. S2CID 33907550.
  52. ^ Armstrong C (april 1998). "The vision of the pore". Science. 280 (5360): 56–7. doi:10.1126/science.280.5360.56. PMID 9556453. S2CID 35339674.
  53. ^ "The Nobel Prize in Chemistry 2003". The Nobel Foundation. Pristupljeno 16. 11. 2007.
  54. ^ Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (novembar 2001). "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution". Nature. 414 (6859): 43–8. Bibcode:2001Natur.414...43Z. doi:10.1038/35102009. PMID 11689936. S2CID 205022645.
  55. ^ Lodish H, Berk A, Kaiser C, Krieger M, Bretscher A, Ploegh H, Amon A, Martin K (2016). Molecular Cell Biology (8th izd.). New York, NY: W. H. Freeman and Company. str. 499. ISBN 978-1-4641-8339-3.
  56. ^ Sauer DB, Zeng W, Raghunathan S, Jiang Y (oktobar 2011). "Protein interactions central to stabilizing the K+ channel selectivity filter in a four-sited configuration for selective K+ permeation". Proceedings of the National Academy of Sciences of the United States of America. 108 (40): 16634–9. Bibcode:2011PNAS..10816634S. doi:10.1073/pnas.1111688108. PMC 3189067. PMID 21933962.
  57. ^ Luzhkov VB, Aqvist J (februar 2005). "Ions and blockers in potassium channels: insights from free energy simulations". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1747 (1): 109–20. doi:10.1016/j.bbapap.2004.10.006. PMID 15680245.
  58. ^ Luzhkov VB, Osterberg F, Aqvist J (novembar 2003). "Structure-activity relationship for extracellular block of K+ channels by tetraalkylammonium ions". FEBS Letters. 554 (1–2): 159–64. doi:10.1016/S0014-5793(03)01117-7. PMID 14596932. S2CID 32031835.
  59. ^ Posson DJ, McCoy JG, Nimigean CM (februar 2013). "The voltage-dependent gate in MthK potassium channels is located at the selectivity filter". Nature Structural & Molecular Biology. 20 (2): 159–66. doi:10.1038/nsmb.2473. PMC 3565016. PMID 23262489.
  60. ^ Choi KL, Mossman C, Aubé J, Yellen G (mart 1993). "The internal quaternary ammonium receptor site of Shaker potassium channels". Neuron. 10 (3): 533–41. doi:10.1016/0896-6273(93)90340-w. PMID 8461140. S2CID 33361945.
  61. ^ Piasta KN, Theobald DL, Miller C (oktobar 2011). "Potassium-selective block of barium permeation through single KcsA channels". The Journal of General Physiology. 138 (4): 421–36. doi:10.1085/jgp.201110684. PMC 3182450. PMID 21911483.
  62. ^ Neyton J, Miller C (novembar 1988). "Potassium blocks barium permeation through a calcium-activated potassium channel". The Journal of General Physiology. 92 (5): 549–67. doi:10.1085/jgp.92.5.549. PMC 2228918. PMID 3235973.
  63. ^ Lockless SW, Zhou M, MacKinnon R (maj 2007). "Structural and thermodynamic properties of selective ion binding in a K+ channel". PLOS Biology. 5 (5): e121. doi:10.1371/journal.pbio.0050121. PMC 1858713. PMID 17472437.
  64. ^ Jiang Y, MacKinnon R (mart 2000). "The barium site in a potassium channel by x-ray crystallography". The Journal of General Physiology. 115 (3): 269–72. doi:10.1085/jgp.115.3.269. PMC 2217209. PMID 10694255.
  65. ^ Lam YL, Zeng W, Sauer DB, Jiang Y (august 2014). "The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K". The Journal of General Physiology. 144 (2): 181–92. doi:10.1085/jgp.201411191. PMC 4113894. PMID 25024267.
  66. ^ Guo R, Zeng W, Cui H, Chen L, Ye S (august 2014). "Ionic interactions of Ba2+ blockades in the MthK K+ channel". The Journal of General Physiology. 144 (2): 193–200. doi:10.1085/jgp.201411192. PMC 4113901. PMID 25024268.

Vanjski linkoviUredi