Za članak o gama funkciji ordinala, pogledajte Veblenova funkcija.

U matematici, gama funkcija (označena velikim grčkim slovom Γ) je proširenje faktorijelske funkcije u realne i kompleksne brojeve. Za kompleksan broj z sa pozitivnim realnim dijelom, gama funkcija je definisana sa

Gama funkcija duž dijela realne ose

Ova definicija može se proširiti na ostatak kompleksne ravni, osim u negativne cijele brojeve.

Ako je n pozitivni cijeli broj, tada je

što pokazuje vezu sa faktorijelskom funkcijom. Gama funkcija uopćuje faktorijelsku funkciju za ne-cijele i kompleksne vrijednosti od n.

Gama funkcija je komponeneta u raznim funkcijama raspodjele vjerovatnoća, i tako takva je primjeljiva u oblastima vjerovatnoće i statistike, kao i kombinatorike.

Definicija

uredi

Glavna definicija

uredi
 
Proširena verzija gama funkcije u kompleksnoj ravni

Oznaku Γ(z) uveo je Adrien-Marie Legendre. Ako je realni dio kompleksnog broja z pozitivan (Re[z] > 0), tada cijeli broj

 

konvergira apsolutno. Koristeći integraciju po članovima, može se pokazati da je

 

Ova funkcionalna jednačina uopćuje relaciju n! = n×(n-1)! faktorijelske funkcije. Γ(1) izračunavamo analitički:

 

Kombinujući ove dvije relacije pokazuje nam kako je faktorijelska funkcija spacijalni slučaj gama funkcije:

 

za sve prirodne brojeve n.

Partikularne vrijednosti

uredi
 

Također pogledajte

uredi

Zabilješke

uredi

Reference

uredi
  • Philip J. Davis, "Leonhard Euler's Integral: A Historical Profile of the Gamma Function," Am. Math. Monthly 66, 849-869 (1959)
  • Pascal Sebah and Xavier Gourdon. Introduction to the Gamma Function. In PostScript and HTML formats.
  • Bruno Haible & Thomas Papanikolaou. Fast multiprecision evaluation of series of rational numbers. Technical Report No. TI-7/97, Darmstadt University of Technology, 1997
  • Julian Havil, Gamma, Exploring Euler's Constant", ISBN 0-691-09983-9 (c) 2003
  • Emil Artin, "The Gamma function", in Rosen, Michael (ed.) Exposition by Emil Artin: a selection; History of Mathematics 30. Providence, RI: American Mathematical Society (2006).

Vanjski linkovi

uredi

Internet stranice

uredi

Dalje čitanje

uredi
  • Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (See Chapter 6)
  • G. Arfken and H. Weber. Mathematical Methods for Physicists. Harcourt/Academic Press, 2000. (See Chapter 10.)
  • Harry Hochstadt. The Functions of Mathematical Physics. New York: Dover, 1986 (See Chapter 3.)
  • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge, UK: Cambridge University Press, 1988. (See Section 6.1.)