Otvori glavni meni
Question book-new.svg Ovaj članak ili neka od njegovih sekcija nije dovoljno potkrijepljena izvorima (literatura, web-stranice ili drugi izvori).
Ako se pravilno ne potkrijepe pouzdanim izvorima, sporne rečenice i navodi mogli bi biti obrisani. Pomozite Wikipediji tako što ćete navesti validne izvore putem referenci te nakon toga možete ukloniti ovaj šablon.
Za druga značenja, pogledajte Divergencija (čvor).

U vektorskom kalkulusu, divergencija je operator koji mjeri intenzitet izvora ili ponora vektorskog polja u datoj tački; divergencija vektorskog polja je skalar. Za vektorsko polje koje pokazuje brzinu širenja zraka kada se on zagrijava, divergencija polja brzine imala bi pozitivnu vrijednost, jer se zrak širi. Da se zrak hladi i skuplja, divergencija bi bila negativna. Divergencija bi se mogla opisati i kao mjera promjene u gustoći.

Vektorsko polje koje ima divergenciju jednaku nuli naziva se solenoidalno vektorsko polje.

DefinicijaUredi

Neka x, y, z bude sistem pravouglih koordinata u 3-dimenzionalnom Euklidovom prostoru, te neka su ijk odgovarajuće baze jediničnih vektora.

Divergencija glatke funkcije vektorskog polja F = Fx i + Fy j + Fz k je definisana kao skalarna funkcija:

 

Iako je izražena preko koordinata, rezultat je invarijanta pri ortogonalnim transformacijama.

Uobičajna oznaka za divergenciju ·F, gdje tačka govori da se radi o skalarnom proizvodu: uzmete komponente od ∇ (pogledajte nabla), pomnožite ih sa komponentama od F, te saberete rezultat.

OsobineUredi

Sljedeće osobine more se izvesti iz običnih pravila matematičke analize. Najvažnije, divergencija je linearni operator, na primjer

 

za sva vektorska polja F i G i za sve realne brojeves a i b.

Postoji pravilo izvoda proizvoda sljedeće vrste: ako je φ skalarna funkcija, a F vektorsko polje, tada je

 

ili ljepše napisano

 

Drugo pravilo proizvoda za vektorski proizvod dva vektorska polja F i G u tri dimenzije uključuje i rotor i čita se na sljedeći način:

 

ili

 

Laplacijan skalarnog polja je divergencija gradijenta polja.

Divergencija rotora bilo kojeg vektorskog polja (u tri dimenzije) je konstanta i jednaka je nuli. Ako je vektorsko polje F, sa divergencijom koja je jednaka nuli, definisano na lopti u R3, tada postoji neko vektorsko polje G na lopti sa F = rot(G). Za regione u R3 komplikovanije od lopti, ova tvrdnja bi mogla biti netačna (pogledajte članak Poincaréova lema). Stepen netačnosti istine ove tvrdnje, mjerena putem homologije lančanog kompleksa

 
 
 
 

Također pogledajteUredi

ReferenceUredi

  1. Brewer, Jess H. (1999-04-07). "DIVERGENCE of a Vector Field". Vector Calculus. Arhivirano s originala, 23 Novembar 2007. Pristupljeno 2007-09-28.  Nepoznat parametar |url-status= ignorisan (pomoć); Provjerite vrijednost datuma kod: |archivedate= (pomoć)
  2. Theresa M. Korn; Korn, Granino Arthur. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York: Dover Publications. str. 157–160. ISBN 0-486-41147-8. 

Vanjski linkoviUredi