P-tijelo
U citologiji, P-tijela ili preradna tijela, razlikuju se od fokusa koji su formirani faznom separacijom u citoplazmi eukariotskih ćelija koje sadrže mnoge enzime uključene u promet iRNK.[1] P-tijela su visoko konzervirane strukture i primijećena su u somatskim ćelijama kičmenjaka i beskičmenjaka, biljaka i kvasca. Do danas je dokazano da P-tijela imaju fundamentalne uloge u cjelini raspada iRNK, nonsensno posredovano raspadanje iRNK, adenilat-uridilatom bogati element je posredovao raspad iRNK, a mikroRNK (miRNK) inducira utišavanje iRNK.[2] Nisu sve iRNK koje ulaze u P-tijela degradirane, jer je pokazano da neke iRNK mogu izaći iz P-tijela i ponovo pokrenuti translaciju.[3][4] Prečišćavanje i sekvenciranje iRNK iz prečišćenih tijela za preradu pokazalo je da su ove iRNK u velikoj mjeri translativno potisnute uzvodno od translacijske inicijacije i da su zaštićene od raspada 5' iRNK.[5]
P-tijela uključena su u dekapiranje i degradaciju neželjenih iRNK,[6] storing mRNA until needed for translation,[5] i pomaganje u translacijskoj represiji miRNK (povezano sa siRNK).
U neuronima, P-tijela pokreću motorni protein kao odgovor na stimulaciju. Ovo je vjerovatno vezano za lokalnu translaciju u dendritima.[7]
Genski ID | Protein | Reference | Prisustvo u stresnim granulama (?) |
---|---|---|---|
MOV10 | MOV10 | [5][8] | Da |
EDC3 | EDC3 | [8] | Da |
EDC4 | EDC4 | [5] | Da |
ZCCHC11 | TUT4 | [5] | Ne |
DHX9 | DHX9 | [5] | Ne |
RPS27A | RS27A | [5] | Ne |
UPF1 | RENT1 | [5] | Da |
ZCCHC3 | ZCHC3 | [5] | Ne |
SMARCA5 | SMCA5 | [5] | Ne |
TOP2A | TOP2A | [5] | Ne |
HSPA2 | HSP72 | [5] | Ne |
SPTAN1 | SPTN1 | [5] | Ne |
SMC1A | SMC1A | [5] | Ne |
ACTBL2 | ACTBL | [5] | Da |
SPTBN1 | SPTB2 | [5] | Ne |
DHX15 | DHX15 | [5] | Ne |
ARG1 | ARGI1 | [5] | Ne |
TOP2B | TOP2B | [5] | Ne |
APOBEC3F | ABC3F | [5] | Ne |
NOP58 | NOP58 | [5] | Da |
RPF2 | RPF2 | [5] | Ne |
S100A9 | S10A9 | [5] | Da |
DDX41 | DDX41 | [5] | Ne |
KIF23 | KIF23 | [5] | Da |
AZGP1 | ZA2G | [5] | Ne |
DDX50 | DDX50 | [5] | Da |
SERPINB3 | SPB3 | [5] | Ne |
SBSN | SBSN | [5] | Ne |
BAZ1B | BAZ1B | [5] | Ne |
MYO1C | MYO1C | [5] | Ne |
EIF4A3 | IF4A3 | [5] | Ne |
SERPINB12 | SPB12 | [5] | Ne |
EFTUD2 | U5S1 | [5] | Ne |
RBM15B | RB15B | [5] | Ne |
AGO2 | AGO2 | [5] | Da |
MYH10 | MYH10 | [5] | Ne |
DDX10 | DDX10 | [5] | Ne |
FABP5 | FABP5 | [5] | Ne |
SLC25A5 | ADT2 | [5] | Ne |
DMKN | DMKN | [5] | Ne |
DCP2 | DCP2 | [5][9][10] | Ne |
S100A8 | S10A8 | [5] | Ne |
NCBP1 | NCBP1 | [5] | Ne |
YTHDC2 | YTDC2 | [5] | Ne |
NOL6 | NOL6 | [5] | Ne |
XAB2 | SYF1 | [5] | Ne |
PUF60 | PUF60 | [5] | Ne |
RBM19 | RBM19 | [5] | Ne |
WDR33 | WDR33 | [5] | Ne |
PNRC1 | PNRC1 | [5] | Ne |
SLC25A6 | ADT3 | [5] | Ne |
MCM7 | MCM7 | [5] | Da |
GSDMA | GSDMA | [5] | Ne |
HSPB1 | HSPB1 | [5] | Da |
LYZ | LYSC | [5] | Ne |
DHX30 | DHX30 | [5] | Da |
BRIX1 | BRX1 | [5] | Ne |
MEX3A | MEX3A | [5] | Da |
MSI1 | MSI1H | [5] | Da |
RBM25 | RBM25 | [5] | Ne |
UTP11L | UTP11 | [5] | Ne |
UTP15 | UTP15 | [5] | Ne |
SMG7 | SMG7 | [5][8] | Da |
AGO1 | AGO1 | [5] | Da |
LGALS7 | LEG7 | [5] | Ne |
MYO1D | MYO1D | [5] | Ne |
XRCC5 | XRCC5 | [5] | Ne |
DDX6 | DDX6/p54/RCK | [5][8][11][12] | Da |
ZC3HAV1 | ZCCHV | [5] | Da |
DDX27 | DDX27 | [5] | Ne |
NUMA1 | NUMA1 | [5] | Ne |
DSG1 | DSG1 | [5] | Ne |
NOP56 | NOP56 | [5] | Ne |
LSM14B | LS14B | [5] | Da |
EIF4E2 | EIF4E2 | [8] | Da |
EIF4ENIF1 | 4ET | [5][8] | Da |
LSM14A | LS14A | [5][8] | Da |
IGF2BP2 | IF2B2 | [5] | Da |
DDX21 | DDX21 | [5] | Da |
DSC1 | DSC1 | [5] | Ne |
NKRF | NKRF | [5] | Ne |
DCP1B | DCP1B | [5][12] | Ne |
SMC3 | SMC3 | [5] | Ne |
RPS3 | RS3 | [5] | Da |
PUM1 | PUM1 | [5] | Da |
PIP | PIP | [5] | Ne |
RPL26 | RL26 | [5] | Ne |
GTPBP4 | NOG1 | [5] | Ne |
PES1 | PESC | [5] | Ne |
DCP1A | DCP1A | [5][9][10][13] | Ne |
ELAVL2 | ELAV2 | [5] | Da |
IGLC2 | LAC2 | [5] | Ne |
IGF2BP1 | IF2B1 | [5] | Da |
RPS16 | RS16 | [5] | Ne |
HNRNPU | HNRPU | [5] | Ne |
IGF2BP3 | IF2B3 | [5] | Da |
SF3B1 | SF3B1 | [5] | Ne |
STAU2 | STAU2 | [5] | Da |
ZFR | ZFR | [5] | Ne |
HNRNPM | HNRPM | [5] | Ne |
ELAVL1 | ELAV1 | [5] | Da |
FAM120A | F120A | [5] | Da |
STRBP | STRBP | [5] | Ne |
RBM15 | RBM15 | [5] | Ne |
LMNB2 | LMNB2 | [5] | Ne |
NIFK | MK67I | [5] | Ne |
TF | TRFE | [5] | Ne |
HNRNPR | HNRPR | [5] | Ne |
LMNB1 | LMNB1 | [5] | Ne |
ILF2 | ILF2 | [5] | Ne |
H2AFY | H2AY | [5] | Ne |
RBM28 | RBM28 | [5] | Ne |
MATR3 | MATR3 | [5] | Ne |
SYNCRIP | HNRPQ | [5] | Da |
HNRNPCL1 | HNRCL | [5] | Ne |
APOA1 | APOA1 | [5] | Ne |
XRCC6 | XRCC6 | [5] | Ne |
RPS4X | RS4X | [5] | Ne |
DDX18 | DDX18 | [5] | Ne |
ILF3 | ILF3 | [5] | Da |
SAFB2 | SAFB2 | [5] | Da |
RBMX | RBMX | [5] | Ne |
ATAD3A | ATD3A | [5] | Da |
HNRNPC | HNRPC | [5] | Ne |
RBMXL1 | RMXL1 | [5] | Ne |
IMMT | IMMT | [5] | Ne |
ALB | ALBU | [5] | Ne |
CSNK1D | CK1𝛿 | [11] | Ne |
XRN1 | XRN1 | [8][9][10] | Da |
TNRC6A | GW182 | [8][10][13][14][15] | Da |
TNRC6B | TNRC6B | [8] | Da |
TNRC6C | TNRC6C | [8] | Da |
LSM4 | LSM4 | [9][13] | Ne |
LSM1 | LSM1 | [9] | Ne |
LSM2 | LSM2 | [9] | Ne |
LSM3 | LSM3 | [9][12] | Da |
LSM5 | LSM5 | [9] | Ne |
LSM6 | LSM6 | [9] | Ne |
LSM7 | LSM7 | [9] | Ne |
CNOT1 | CCR4/CNOT1 | [8][12] | Da |
CNOT10 | CNOT10 | [8] | Da |
CNOT11 | CNOT11 | [8] | Da |
CNOT2 | CNOT2 | [8] | Da |
CNOT3 | CNOT3 | [8] | Da |
CNOT4 | CNOT4 | [8] | Da |
CNOT6 | CNOT6 | [8] | Da |
CNOT6L | CNOT6L | [8] | Da |
CNOT7 | CNOT7 | [8] | Da |
CNOT8 | CNOT8 | [8] | Da |
CNOT9 | CNOT9 | [8] | Ne |
RBFOX1 | RBFOX1 | [16] | Da |
ANKHD1 | ANKHD1 | [8] | Da |
ANKRD17 | ANKRD17 | [8] | Da |
BTG3 | BTG3 | [8] | Da |
CEP192 | CEP192 | [8] | Ne |
CPEB4 | CPEB4 | [8] | Da |
CPVL | CPVL | [8] | Da |
DIS3L | DIS3L | [8] | Ne |
DVL3 | DVL3 | [8] | Ne |
FAM193A | FAM193A | [8] | Ne |
GIGYF2 | GIGYF2 | [8] | Da |
HELZ | HELZ | [8] | Da |
KIAA0232 | KIAA0232 | [8] | Da |
KIAA0355 | KIAA0355 | [8] | Ne |
MARF1 | MARF1 | [8] | Da |
N4BP2 | N4BP2 | [8] | Ne |
PATL1 | PATL1 | [8] | Da |
RNF219 | RNF219 | [8] | Da |
ST7 | ST7 | [8] | Da |
TMEM131 | TMEM131 | [8] | Da |
TNKS1BP1 | TNKS1BP1 | [8] | Da |
TTC17 | TTC17 | [8] | Da |
Reference
uredi- ^ Luo Y, Na Z, Slavoff SA (maj 2018). "P-Bodies: Composition, Properties, and Functions". Biochemistry. 57 (17): 2424–2431. doi:10.1021/acs.biochem.7b01162. PMC 6296482. PMID 29381060.
- ^ Kulkarni M, Ozgur S, Stoecklin G (februar 2010). "On track with P-bodies". Biochemical Society Transactions. 38 (Pt 1): 242–251. doi:10.1042/BST0380242. PMID 20074068.
- ^ Brengues M, Teixeira D, Parker R (oktobar 2005). "Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies". Science. 310 (5747): 486–489. Bibcode:2005Sci...310..486B. doi:10.1126/science.1115791. PMC 1863069. PMID 16141371.
- ^ Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (juni 2006). "Relief of microRNA-mediated translational repression in human cells subjected to stress". Cell. 125 (6): 1111–1124. doi:10.1016/j.cell.2006.04.031. PMID 16777601. S2CID 18353167.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, et al. (oktobar 2017). "P-Body Purification Reveals the Condensation of Repressed mRNA Regulons". Molecular Cell. 68 (1): 144–157.e5. doi:10.1016/j.molcel.2017.09.003. PMID 28965817.
- ^ Sheth U, Parker R (maj 2003). "Decapping and decay of messenger RNA occur in cytoplasmic processing bodies". Science. 300 (5620): 805–808. Bibcode:2003Sci...300..805S. doi:10.1126/science.1082320. PMC 1876714. PMID 12730603.
- ^ Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonné R, Filipowicz W, Bertrand E, Rage F (decembar 2008). "Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation". The Journal of Neuroscience. 28 (51): 13793–13804. doi:10.1523/JNEUROSCI.4155-08.2008. PMC 6671906. PMID 19091970.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Youn JY, Dunham WH, Hong SJ, Knight JD, Bashkurov M, Chen GI, et al. (februar 2018). "High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies". Molecular Cell. 69 (3): 517–532.e11. doi:10.1016/j.molcel.2017.12.020. PMID 29395067.
- ^ a b c d e f g h i j Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T (decembar 2002). "The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci". RNA. 8 (12): 1489–1501. doi:10.1017/S1355838202021726. PMC 1370355. PMID 12515382.
- ^ a b c d Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, et al. (juni 2005). "Stress granules and processing bodies are dynamically linked sites of mRNP remodeling". The Journal of Cell Biology. 169 (6): 871–884. doi:10.1083/jcb.200502088. PMC 2171635. PMID 15967811.
- ^ a b Zhang B, Shi Q, Varia SN, Xing S, Klett BM, Cook LA, Herman PK (juli 2016). "The Activity-Dependent Regulation of Protein Kinase Stability by the Localization to P-Bodies". Genetics. 203 (3): 1191–1202. doi:10.1534/genetics.116.187419. PMC 4937477. PMID 27182950.
- ^ a b c d Cougot N, Babajko S, Séraphin B (april 2004). "Cytoplasmic foci are sites of mRNA decay in human cells". The Journal of Cell Biology. 165 (1): 31–40. doi:10.1083/jcb.200309008. PMC 2172085. PMID 15067023.
- ^ a b c Eystathioy T, Jakymiw A, Chan EK, Séraphin B, Cougot N, Fritzler MJ (oktobar 2003). "The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies". RNA. 9 (10): 1171–1173. doi:10.1261/rna.5810203. PMC 1370480. PMID 13130130.
- ^ Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ (april 2002). "A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles". Molecular Biology of the Cell. 13 (4): 1338–1351. doi:10.1091/mbc.01-11-0544. PMC 102273. PMID 11950943.
- ^ Yang Z, Jakymiw A, Wood MR, Eystathioy T, Rubin RL, Fritzler MJ, Chan EK (novembar 2004). "GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation". Journal of Cell Science. 117 (Pt 23): 5567–5578. doi:10.1242/jcs.01477. PMID 15494374.
- ^ Kucherenko MM, Shcherbata HR (januar 2018). "Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival". Nature Communications. 9 (1): 312. Bibcode:2018NatCo...9..312K. doi:10.1038/s41467-017-02757-w. PMC 5778076. PMID 29358748.
Dopunska literatura
uredi- Kulkarni M, Ozgur S, Stoecklin G (februar 2010). "On track with P-bodies". Biochemical Society Transactions. 38 (Pt 1): 242–251. doi:10.1042/BST0380242. PMID 20074068.
- Eulalio A, Behm-Ansmant I, Izaurralde E (januar 2007). "P bodies: at the crossroads of post-transcriptional pathways". Nature Reviews. Molecular Cell Biology. 8 (1): 9–22. doi:10.1038/nrm2080. PMID 17183357. S2CID 41419388.
- Marx J (novembar 2005). "Molecular biology. P-bodies mark the spot for controlling protein production". Science. 310 (5749): 764–765. doi:10.1126/science.310.5749.764. PMID 16272094. S2CID 11106208.
- Anderson P, Kedersha N (juni 2009). "RNA granules: post-transcriptional and epigenetic modulators of gene expression". Nature Reviews. Molecular Cell Biology. 10 (6): 430–436. doi:10.1038/nrm2694. PMID 19461665. S2CID 26578027.