Stokesovo strujanje

Stokesovo strujanje (nazvano po Georgeu Gabrielu Stokesu) je vrsta strujanja fluida gdje su advektivne inercijalne sile male naspram viskoznih sila. Reynoldsov broj je nizak, odnosno . Ovo je tipična situacija kod strujanja gdje su brzine fluida niske, viskoznosti su veoma velike.

Predmet, koji se kreće kroz tečnost, suočava se sa silom suprotnom smijeru njegovog kretanja. Terminalna brzina se dostiže kada je sila otpora jednaka po intenzitetu, ali suprotna po pravcu sili koja pogoni predmeta. Na slici je prikazana sfera u Stokesovom strujanju, sa veoma malim Reynoldsovim brojem.

Stokesove jednačineUredi

Za ovu vrstu strujanja, za inercijalne sile se pretpostavlja da su zanemarive, te pojednostavljenjem Navier–Stokesovih jednačina, dobijamo Stokesove jednačine:

 

gdje je   uzdužni tenzor napona, a   su primijenjene masene sile. Postoji, također, jednačina za održanje mase. U slučaju nestišljivog newtonovog fluida, Stokesove jednačine glase:

 
 

Metode rješavanjaUredi

Pomoću strujnih funkcijaUredi

Može se pokazati da u ravni (2D), strujna funkcija nestišljivog Newton-Stokesovog strujanja zadovoljava biharmonijsku jednačinu  .

U osno-simetričnom, 3D slučaju, Stokesova strujna funkcija   rješava jednačinu  , gdje je  

Pomoću Papković-Neuberovog rješenjaUredi

Papković-Neuberovo rješenje predstavlja polja brzine i pritiska nestišljivog Newton-Stokesovog strujanja u smislu dva harmonijska potencijala.

Pomoću metoda graničnih elemenataUredi

Određeni problemi, kao što je izračunavanje oblika mjehurića u Stokesovom strujanju, su pogodni za numerička rješenja preko metoda graničnih elemenata. Ova tehnika može se primijeniti i na dvodimejnzionalna i na trodimenzionalna strujanja.

Greenova funkcijaUredi

Linearnost Stokesovih jednačina u slučaju nestišljivog newtonovog strujanja fluida znači da se može naći Greenova formula za date jednačine. Rješenja za pritisak   i brzinu   zbog sile u tački ( ) koja djeluje u ishodištu sa   kada   je data sa

 
 

gdje je

 

drugostepeni tenzor poznat kao Oseenov tenzor (nazvan po Carlu Wilhelmu Oseenu).

Rješenje raspodjele gustine sile   (koja je jednaka buli kada se teži u beskonačnost) se može naporaviti pomoću superpozicije:

 
 

Također pogledajteUredi

ReferenceUredi

  • Happel, J. & Brenner, H. (1981) Low Reynolds Number Hydrodynamics, Springer. ISBN 90-01-37115-9.
  • Kim, S. & Karrila, S. J. (2005) Microhydrodynamics: Principles and Selected Applications, Dover. ISBN 0-486-44219-5.
  • Ockendon, H. & Ockendon J. R. (1995) Viscous Flow, Cambridge University Press. ISBN 0-521-45881-1.