Prost broj

Prost broj je prirodni broj veći od 1 koji je dijeljiv jedino sa 1 i samim sobom.

Prime number Cuisenaire rods 7.png

Primjeri prostih brojeva su: 2, 3, 5, 7....

Broj ne možemo rastaviti na proste faktore ako je: .

Broj je prost ako je dijeli dijeli ili dijeli .

Lahko se može dokazati da ako je broj prost onda је i nerastavljiv i obrnuto. Složen broj je broj koji je djeljiv samim sobom, sa 1, te još nekim brojem.

Svaki složeni broj može se na jedinstven način rastaviti na proste faktore:

  125|5      34|2
   25|5      17|17
    5|5       1 
    1
  
  125=5*5*5   34=2*17

DefinicijaUredi

Prirodni broj se zove prost broj (ili premijer) ako ima tačno dva pozitivna djelitelja,   i sam taj broj. Prirodni brojevi veći od 1 koji nisu prosti nazivaju se složeni

Primjer

Broj 12 nije prost, jer 12 možemo podijeliti u 3 kolone po 4 elementa

11 možemo smjestiti samo u jednu ili 11 kolona po 11 odnosno 1 elemenat, tj 11 je prost broj.

Među brojevima od 1 do 6, broj 2, 3 i 5 su prosti brojevi, a 1, 4, i 6 nisu prosti.

  •  
  •  
  •  
  •  

Iz navedenog se vidi da su prirodni brojevi podijeljeni u tri klase.

  • Broj 1
  • Prosti brojevi
  • Složeni brojevi

U skupu prirodnih brojeva broj   ima poseban položaj, zato je izdvojen u posebnu klasu. Djeljivost u skupu   može se proširiti na skup   i reći da je   djeljiva sa svakim prirodnim brojem, jer je  . Broj   nije ni prost ni složen broj.

Ovo možemo reći na još jedan način

Broj   je prost, ako ga možemo napisati kao proizvod dva prirodna broja   i  , koji su veći od  

 

Svi prosti brojevi manji od 1000 su:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 [1]

Osnovna teorema aritmetikeUredi

Svaki prirodni broj   ( ) postoji jedinstven rastav na proste faktore  

Gdje su   te su svi   prosti brojevi.

Primjer

 

 

Rastavljanje složenih brojeva na proste faktoreUredi

Rastavljanje se može postići dijeljenjem s prostim brojevima, međutim, ako znamo neka jednostavna pravila, to rastavljanje postaje vrlo jednostavno.

  • Ako je broj paran (zadnja cifra mu je 2, 4, 6, 8 ili 0) onda je djeljiv s brojem 2.
  • Ako broj završava ciframa 5 ili 0 onda je djeljiv s brojem 5.
  • Ako mu je zbir cifara dijeljiv s 3, onda je taj broj djeljiv s 3.[2]

Eratostenovo sitoUredi

Ovo je mehanički postupak pronalaženja prostih brojeva koji nisu veći od n . Ispišemo sve brojeve od 2 do n. Pođemo od broja 2 i precrtavamo svaki drugi broj, zatim pođemo od broja 3 i precrtavamo svaki treći s time da brojimo i precrtane brojeve, pa od prvog neprecrtanog broja itd. Ovaj postupak ponavljamo dok ne dođemo do broja p za koji je p^2 > n. Neprecrtani brojevi su prosti. Primjer za  :

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

KriptografijaUredi

Važna primjena prostih brojeva je u oblasti kriptografije. Algoritmi za šifriranje poruke žive od toga sto ne postoji efikasan algoritam za rastavljanje broja na proste faktore. Tako se lahko mogu pomnožiti dva dovoljno velika prosta broja, međutim, obrnuti proces, tj. naći njegove proste faktore traje dosta duže. Poznata šifra koja na tome bazira je RSA [3]

Brojnost prostih brojevaUredi

Prostih brojeva ima beskonačno mnogo. Ovo je prvi dokazao Euklid u svojim Elementima, knjiga X, Teorema 20. Njegov dokaz je sljedeći:

Pretpostavimo da je broj prostih brojeva konačan. Pomnožimo ih sve i dodajmo 1. Dobićemo broj koji podijeljen sa bilo kojim prostim brojem daje ostatak 1. Dobili smo broj koji nema djelitelja među postojećim brojevima. To jeste prost broj veći od prethodnih.

Matematičari su otkrili još osobina koje su vezane za brojnost prostih brojeva. Ojler je otkrio da red recipročnih prostih brojeva divergira. Čak je nađena asimptotska formula za zbir prostih brojeva manjih od nekog datog

 

Postoji funkcija   koja ima vrijednost jednaku broju prostih brojeva u intervalu  . Ona daje odgovor na pitanje kolikoima prostih brojeva manjih od datog broja. Primjer:  . Za veće brojeve funkcija glasi:

 .

Vrijednost funkcije  

manjih od x  
10 4
100 25
1.000 168
10.000 1.229
100.000 9.592
1.000.000 78.498
10.000.000 664.579
100.000.000 5.761.455
1.000.000.000 50.847.534
10.000.000.000 455.052.511
100.000.000.000 4.118.054.813
1.000.000.000.000 37.607.912.018
10.000.000.000.000 346.065.536.839
100.000.000.000.000 3.204.941.750.802
1.000.000.000.000.000 29.844.570.422.669
10.000.000.000.000.000 279.238.341.033.925
100.000.000.000.000.000 2.623.557.157.654.233
1.000.000.000.000.000.000 24.739.954.287.740.860
10.000.000.000.000.000.000 234.057.667.276.344.607
100.000.000.000.000.000.000 2.220.819.602.560.918.840
1.000.000.000.000.000.000.000 21.127.269.486.018.731.928
10.000.000.000.000.000.000.000 201.467.286.689.315.906.290

Gustoća raspodjele prostih brojevaUredi

Posmatrajmo omjer gustoće prostih brojeva manjih od nekog broja n i recipročne vrijednosti prirodnog logaritma tog broja. Gustoća prostih brojeva u skupu   opada kao i recipročna vrijednost prirodnog logaritma broja n, za velike vrijednosti n ( ).

n      
  0,168 0,1448 1,16022
  0,078498 0,0723824 1,08449
  0,050847534 0,048254942 1,05372
  0,037607912018 0,03619120682 1,03914
  0,018435599767349 0,018095603412635 1,018788

Dirichletov teoremUredi

Neka su d i a prirodni brojevi takvi da je njihova mjera  , tj. oni su relativno prosti, tada postoji beskonačno mnogo prim brojeva oblika  ,   , tj. postoji beskonačno mnogo prim brojeva u aritmetičkom nizu  

Prosti brojevi 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … u aritmetičkim nizu

 

Prosti brojevi 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, … u aritmetičkim nizu  
Prosti brojevi 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, … u aritmetičkim nizu  

Euklidov teoremUredi

Skup svih prostih brojeva je beskonačan.

Dokaz za neke opšte aritmetičke nizove. Svaki prost broj veći od 2 je neparan, te je oblika   ili  . Proizvod dva broja oblika   također je tog oblika:

 

Pretpostavimo da postoji konačno mnogo prostih brojeva

  koji su oblika  .

 

N je prost broj, ili se može rastaviti na proizvod prostih brojeva, od kojih nijedan nije   jer ostatak dijeljenja broja N sa nekim od brojeva p je -1. Svi prosti faktori broja N ne mogu biti oblika  , jer N nije tog oblika. Kao što smo vidjeli, proizvod brojeva oblika   je također je broj tog oblika.

Prema tome, bar jedan prost faktor mora biti oblika  , što je nemoguće, jer taj faktor nije nijedan od brojeva p, za koje smo pretpostavili da su svi prosti brojevi oblika  .

Dakle, broj prostih brojeva takvog oblika je beskonačan.

Posljedica Dirichletove teoreme je

Red recipročnih prostih brojeva oblika  

  divergira

Najveći poznati prost brojUredi

Trenutno najveći poznati prost broj je 230.402.457 − 1 (ovaj broj ima 9.152.052 cifara). Izračunali su ga 15. decembra 2005. godine dva profesora sa Misuri državnog univerziteta. Označava se sa М30402457 i predstavlja 43. Mersenov prost broj.

Prethodni najveći poznati prost broj je bio M25964951 = 225.964.951 − 1 (42. poznati Mersenov prost broj, 7.816.230 cifara) a pre njega M24036583 = 224.036.583 − 1 (41. poznati Mersenov prost broj, 7.235.733 cifara)

Postoji dobar praktičan razlog zašto su svi veliki prosti brojevi oblika Mersenovih prostih brojeva. To je relativno jednostavan metod za provjeru složenosti broja (Lukas-Lemer test). Za ostale brojeve je metoda vremenski zahtjevna.

Najveći prost broj koji nije ovog oblika je 27.653 × 29.167.433 + 1 (2.759.677 cifara) i šesti je po veličini na listi najvećih poznatih prostih brojeva.

Za nalaženje prostog broja sa 107 decimalnih cifara postoji nagrada od 100.000 dolara.

Ulamova spiralaUredi


Ulamova spirala je jednostavan način vizualizacije prostih brojeva. Potrebno je napisati brojeve od 1 pa nadalje u obliku pravougle spirale, te nakon toga pobrisati sve brojeve osim prostih, na taj način se dobiju zanimljivi oblici. Otkrio ju je Stanislaw Ulam 1963. godine dok se dosađivao na sastanku crtkarajući po papiru, primijetivši da se prosti brojevi nalaze na dijagonalama. Ubrzo nakon toga je sa saradnicima Myronom Steinom i Mark Wellsom koristeći MANIAC II (Mathematical Analyzer Numerical Integrator and Computer Model II) u istraživačkom laboratoriju u Los Alamosu, generirao sliku spirale koja je obuhvatala brojeve do 65 000.

Teoreme i slutnjeUredi

U potrazi za nekim zakonima i pravilnostima među prostim brojevima proizašle su mnoge teoreme i hipoteze. Neke od njih su :

Goldbachova hipotezaUredi

Polovinom XVIII vijeka njemački matematičar Christian Goldbach je napisao pismo Leonhardu Euleru u koje je izrekao sljedeću hipotezu:

Svaki prirodni broj koji se može predstaviti kao zgir 2 prosta broja, također se može predstaviti kao zbir sve više i više prostih brojeva dok svi ne budu jedinice.

Nakon toga je na margini pisma zapisao drugu hipotezu:

Svaki parni prirodni broj veći od 2 se može zapisati kao zbir 3 prosta.

Goldbach je smatrao broj 1 prostim, što je kasnije defnicija prostih brojeva izostavila. Danas je poznato da su te 2 hipoteze ekvivalentne.

Euler mu je odgovorio i prepravio Goldbachovu hipoteza:

Svaki prirodni broj veći od 2 se može zapisati kao zbir 2 prosta.

Još jedna Goldbachova hipoteza da se svaki neparni broj veći od 5 može prikazati kao zbir 3 prosta slijedi implikacijom iz potonje.

Do danas je hipoteza provjerena za prirodne brojeve manje od  . Hipoteza još nije dokazana.

Chenov teoremUredi

Chen Jingrun je bio kineski matematičar XX vijeka. Svojim teoremom je napravio veliki korak prema rješavanju Goldbachove hipoteze.

Teorem glasi

Svaki dovoljno veliki prirodni broj može se prikazati kao zbir 2 prosta ili kao zbir prostog i poluprostog ( proizvod 2 prosta)

Green-Tao teoremaUredi

Teoremu su dokazali Ben Green i Terence Tao 2004. godine.

Niz prostih brojeva sadrži proizvoljno mnogo proizvoljno dugačkih aritmetičkih nizova.

Drugim riječima postoji niz prostih brojeva s n članova :   gdje je   i   Ova teorema samo govori da postoje i ne pokazuje kako se pronalaze.

Mala Fermatova teoremaUredi

Francuski matematičar Pierre de Fermat prvi iznio ovu teoremu koji daje nužan uslov djeljivosti s prostim brojevima.

 

daje isti ostatak pri dijeljenju s p kao i a, gdje je a prirodni broj, a p prost

IzvoriUredi

Također pogledajteUredi


ReferenceUredi