Razlika između verzija stranice "Borij"

[pregledana izmjena][pregledana izmjena]
Uklonjeni sadržaj Dodani sadržaj
No edit summary
No edit summary
Red 89:
 
== Historija ==
Dvije grupe naučnika tvrdile su prvu sintezu i otkriće ovog elementa. Dokaz postojanja borija prvi je pružio sovjetski istraživački tim 1976. godine, na čelu kojeg se nalazio [[Jurij Oganesian]]. Oni su izvršili eksperiment bombardiranja mete sačinjene od izotopa [[bizmut]]a-209 i olova-208 jako ubrzanim jezgrima metala [[hrom]]a-54 i [[mangan]]a-55, respektivno.<ref name="yutsog"/> Zapažene su dvije aktivnosti, jedna sa vremenom poluraspada od jedne do dvije milisekunde, a druga sa približnim vremenom poluraspada od pet sekundi. Pošto je odnos intenziteta ove dvije aktivnosti ostao konstantan tokom cijelog eksperimenta, kasnije je donesen zaključanzaključak da prva aktivnost potječe od izotopa borija-261, dok se kod druge aktivnosti radi o njegovoj "kćerki"-izotopu elementa [[dubnij]]a-257. Naredna istraživanja ispravila su pretpostavke da se zapravo radilo o izotopu dubnij-258, koji se zaista i poluraspada za pet sekundi (Db-257 ima vrijeme poluraspada od jedne sekunde). Međutim, vrijeme poluraspada koje je izmjereno za roditeljski nuklid bilo je znatno kraće od vremena poluraspada koja su kasnije izmjerena kod konačnog, nesumnjivog otkrića borija u Darmstadtu 1981. godine. Radna grupa [[IUPAC]]/IUPAP (TWG) zaključila je da iako se u ovom eksperimentu možda i radilo o dubniju-258, dokaz dobijanja njegovog roditeljskog nuklida Bh-262 nije bio dovoljno ubjedljiv.<ref name="93TWG"/>
 
Godine [[1981]]. njemački tim naučnika koji su predvodili [[Peter Armbruster]] i [[Gottfried Münzenberg]] pri Centru za istraživanje teških iona GSI Helmholtz (''GSI Helmholtzzentrum für Schwerionenforschung'') u blizini [[Darmstadt]]a bombardirali su metu sačinjenu od bizmuta-209 ubrzanim jezgrima hroma-54 čime su dobili pet atoma izotopa borija-262:<ref name="262Bh"/>
:{{Su|p=209|b=83}}Bi + {{Su|p=54|b=24}}Cr → {{Su|p=262|b=107}}Bh + [[neutron|n]]
 
Red 99:
 
Godine [[1994.]] komitet [[IUPAC]]a je predložio ime borij. Ipak nesuglasice su postojale sve do [[1997.]] kada je dobio današnji naziv.
 
== Osobine ==
=== Izotopi ===
{{Prijevod sekcija}}
Bohrium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusing two atoms or by observing the decay of heavier elements. Twelve different isotopes of bohrium have been reported with atomic masses 260–262, 264–267, 270–272, 274, and 278, one of which, bohrium-262, has a known [[metastable state]]. All of these but the unconfirmed <sup>278</sup>Bh decay only through alpha decay, although some unknown bohrium isotopes are predicted to undergo spontaneous fission.<ref name=nuclidetable/>
 
The lighter isotopes usually have shorter half-lives; half-lives of under 100&nbsp;ms for <sup>260</sup>Bh, <sup>261</sup>Bh, <sup>262</sup>Bh, and <sup>262m</sup>Bh were observed. <sup>264</sup>Bh, <sup>265</sup>Bh, <sup>266</sup>Bh, and <sup>271</sup>Bh are more stable at around 1&nbsp;s, and <sup>267</sup>Bh and <sup>272</sup>Bh have half-lives of about 10&nbsp;s. The heaviest isotopes are the most stable, with <sup>270</sup>Bh and <sup>274</sup>Bh having measured half-lives of about 61&nbsp;s and 40&nbsp;s respectively, and the even heavier unconfirmed isotope <sup>278</sup>Bh appearing to have an even longer half-life of about 690&nbsp;s. The unknown isotopes <sup>273</sup>Bh and <sup>275</sup>Bh are predicted to have even longer half-lives of around 90&nbsp;minutes and 40&nbsp;minutes respectively. Before its discovery, <sup>274</sup>Bh was also predicted to have a long half-life of 90&nbsp;minutes, but it was found to have a shorter half-life of only about 40&nbsp;seconds.<ref name=nuclidetable/>
 
The proton-rich isotopes with masses 260, 261, and 262 were directly produced by cold fusion, those with mass 262 and 264 were reported in the decay chains of meitnerium and roentgenium, while the neutron-rich isotopes with masses 265, 266, 267 were created in irradiations of actinide targets. The five most neutron-rich ones with masses 270, 271, 272, 274, and 278 (unconfirmed) appear in the decay chains of <sup>282</sup>Nh, <sup>287</sup>Mc, <sup>288</sup>Mc, <sup>294</sup>Ts, and <sup>290</sup>Fl respectively. These eleven isotopes have half-lives ranging from about ten&nbsp;milliseconds for <sup>262m</sup>Bh to about one&nbsp;minute for <sup>270</sup>Bh and <sup>274</sup>Bh, extending to about twelve minutes for the unconfirmed <sup>278</sup>Bh, one of the longest-lived known superheavy nuclides.<ref name="Doi_"/>
 
== Napomene ==
Line 104 ⟶ 113:
== Reference ==
{{refspisak|2|refs=
<ref name="Doi_">{{cite book|author=Münzenberg G.; Gupta M.|editor=Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezso György Lovas, Frank Rösch|title=Handbook of Nuclear Chemistry|chapter=Production and Identification of Transactinide Elements|pages=877|year=2011|doi=10.1007/978-1-4419-0720-2_19|isbn=978-1-4419-0719-6}}</ref>
<ref name=nuclidetable>{{cite web |url=http://www.nndc.bnl.gov/chart/reCenter.jsp?z=107&n=163 |title=Interactive Chart of Nuclides |publisher=Brookhaven National Laboratory |author=Sonzogni, Alejandro |location=National Nuclear Data Center |pristupdatum=26. 3. 2018}}</ref>
<ref name="262Bh">{{cite journal|author=Münzenberg G.; Hofmann S.; Heßberger F. P.; Reisdorf W. ''et al.''|year=1981|title=Identification of element 107 by α correlation chains|journal=Zeitschrift für Physik A|volume=300|issue=1|pages=107–8|doi=10.1007/BF01412623|bibcode = 1981ZPhyA.300..107M|url=https://www.researchgate.net/publication/238901044_Identification_of_Element_107_by_a_Correlation_Chains|pristupdatum=24. 12. 2016}}</ref>
<ref name="93TWG">{{Cite journal|doi=10.1351/pac199365081757|title=Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements|year=1993|journal=Pure and Applied Chemistry|volume=65|pages=1757|author=Barber, R. C.; Greenwood N. N.; Hrynkiewicz A. Z.; Jeannin Y. P. ''et al.''|issue=8}}</ref>